
Elliptic Curves in Public Key Cryptography: 

The Diffie Hellman Key Exchange Protocol and its relationship to the Elliptic Curve 

Discrete Logarithm Problem 

Public Key Cryptography 

Public key cryptography is a modern form of cryptography that allows different 

parties to exchange information securely over an insecure network, without having first 

to agree upon some secret key. The main use of public key cryptography is to provide 

information security in computer science, for example to transfer securely email, credit 

card details or other secret information between sender and recipient via the internet.  

There are three steps involved in transferring information securely from person A 

to person B over an insecure network. These are encryption of the original information, 

called the plaintext, transfer of the encrypted message, or ciphertext, and decryption of 

the ciphertext back into plaintext. Since the transfer of the ciphertext is over an insecure 

network, any spy has access to the ciphertext and thus potentially has access to the 

original information, provided he is able to decipher the message. Thus, a successful 

cryptosystem must be able encrypt the original message in such a way that only the 

intended receiver can decipher the ciphertext. The goal of public key cryptography is to 

make the problem of deciphering the encrypted message too difficult to do in a 

reasonable time (by say brute-force) unless certain key facts are known. Ideally, only the 

intended sender and receiver of a message should know these certain key facts. 

Any certain piece of information that is essential in order to decrypt a message is 

known as a key. A key(s) specifies the particular function that transforms the original 

message into ciphertext and vice versa. Public key cryptography relies on two keys, a 



private key and a public key. The public key is published in a place where anyone has 

access to it. However, each individual person or computer also chooses a private key that 

should be known only to that individual. The importance of the key to the encryption 

algorithm should be so great, that if the key is lost, it should be computationally 

infeasible to recover the original message from the encrypted data.  

In 1976, Diffie and Hellman proposed the use of certain one-way functions called 

trap-door functions, to make it almost impossible to decipher encrypted data without a 

key. The idea is that for each key k, we can choose an encryption function fk:M → C such 

that it is almost impossible to compute fk
-1 without knowing k, in polynomial time. Here, 

M is the set of messages and C is the set of ciphertext. Before we illustrate how the 

cryptosystem works, we make a few observations about these trap-door functions. Firstly, 

in order to avoid ambiguity in transferring messages, we insist that the encryption 

function fk is injective. That is, each message m∈M corresponds to one and only one 

ciphertext c∈C. If we choose M=C, then fk is a bijection and this implies that each 

element of M must have an inverse in M. Therefore, it is natural to choose M to be a 

group. Later, we will see that in elliptic curve cryptography, the group M is the group of 

rational points on an elliptic curve. Before we delve into public key cryptography using 

elliptic curves, I will give an example of how public key cryptosystems work in general.  

Suppose person A want to send a message to person B. Person A chooses some 

key, k, and an encryption function fk as defined above. Person A publishes fk, which is his 

public key. Therefore, anyone who wishes to send a message to person A must look up 

his encryption function fk, and encrypt their message using this function. Once the 

message is encrypted, it is very difficult to decipher. This is why the trap door or secret 



key is necessary. We call k, the secret key and only with the knowledge of k, can fk
-1 be 

computed easily and hence the message decrypted. Person A is the only one who should 

know the value of k and thus, person A is the only one who should be able to decrypt the 

message.  

There is one last point about the description of the trap door function fk that I have 

left quite vague. That is, I have not said what it means for it to be “almost impossible” to 

obtain fk
-1 from fk. In the language of complexity theory, “almost impossible to compute 

fk
-1 from fk” means “impossible to compute fk

-1 from fk by a deterministic algorithm in 

polynomial time”.  Now, due to the unsolved nature of the P=NP problem, it is not 

known whether there actually exists a trap door function. However, we do have functions 

that behave like trap door functions in the time frame within which we are trying to solve 

the problem i.e. “reasonable” time. However, what counts as reasonable time depends on 

the level of security one desires. For example, for an intelligence agency, “reasonable 

time” will be much longer than that for someone sending an e-card.  

Diffie-Hellman Key Exchange 

The cryptosystem we aim to achieve is one where the sender and receiver 

exchange pieces of information via an insecure network resulting in both parties sharing a 

common secret whereas anyone else who intercepts the transfer of the message, is unable 

to discover the shared secret. This shared secret is what is used as a key in conventional 

cryptosystems. Such a system is a full public key cryptosystem. We illustrate this key 

exchange protocol with an example. 



Alice and Bob aim to exchange information using a public key cryptosystem. 

1.	 They publicly choose a cyclic group G and a generator x of G. 

2.	 Alice and Bob choose private keys a and b respectively, where a and b are random 

integers. 

3.	 Alice computes xa, Bob computes xb and they exchange these values over an 

insecure network. 

4.	 On receiving the information from each other, both Alice and Bob compute the 

avalue xab using their private keys and the fact that xab = (xa)b = (xb) . 

Now, both Alice and Bob share a secret, namely, the value xab. That is, Alice and Bob 

have exchanged a key, xab, that can now be used in a conventional cryptosystem to 

encrypt any messages between Alice and Bob.  

If the message was intercepted, the eavesdropper, in order to decipher the message, has to 

obtain the value xab from x, xa and xb. This problem is called the Diffie-Hellman problem.  

One way to tackle this problem is to try to compute a from xa. This is known as the 

discrete logarithm problem.  

With the basics of public key cryptography in hand, we are now in a position to 

apply elliptic curves to public key cryptography in order to generate public and private 

keys. 

Elliptic Curve Cryptography 

In 1985, Neal Koblitz and Victor Miller independently suggested the use of 

elliptic curves in public key cryptography. Supporters of elliptic curve cryptography 



(ECC) claim that ECC requires much smaller keys than those used in conventional public 

key cryptosystems, while maintaining an equal level of security. The use of elliptic 

curves therefore allows faster encryption and decryption.  

We now recall a few facts about elliptic curves before illustrating the application 

to public key cryptography. 

Given an elliptic curve E and a field Fq, we consider the rational points E(Fq) of the form 

(x,y) where both x and y belong to Fq. We choose the point at infinity to be σ. 

1.	 Define the operation “+” on the set of rational points of E as follows. If P and Q 

are two rational points on E, then P+Q is given by the following rule: 

Draw the line joining P and Q, take the third point of intersection of this 

line with the curve as R. Draw the line through σ and R, and take the third 

point of intersection of this line with E. This point is the point P+Q. Note 

the operation “+” is commutative.  

In particular we have, σ+ σ= σ and P+(-P)= σ. 

2.	 Define the operation “*” as follows * : Z× E(Fq) → E(Fq) and if P is some point 

in E(Fq), then we define n*P as P+P+P+…..+P, n times. Note that for integers j 

and k, j*(k*P) = (j*k)*P = k*(j*P). 

3.	 The set of rational points on E form an abelian group under the operation “+” with 

identity σ. 



Definition: The elliptic curve discrete logarithm problem (ECDLP) is to determine the 

integer k, given rational points P and Q on E, and given that k*P=Q.  

Elliptic curve public key cryptography is based on the premise that the elliptic 

curve discrete logarithm problem is very difficult; in fact, much more so than the discrete 

logarithm function for a multiplicative group over a finite field. As mentioned before a 

group is normally used in public key cryptography as the domain on which we define our 

encryption function. This is because we need every element of our domain to have an 

inverse and vice versa. In elliptic curve cryptography, the group used is the group of 

rational points on a given elliptic curve. 

This is how elliptic curve public key cryptography works. For Alice and Bob to 

communicate securely over an insecure network they can exchange a private key over 

this network in the following way: 

1.	 A particular rational base point P is published in a public domain for 

use with a particular elliptic curve E(Fq) also published in a public 

domain.  

2.	 Alice and Bob choose random integers kA and kB respectively, which 

they use as private keys. 

3.	 Alice computes kA*P, Bob computes kB*P and they exchange these 

values over an insecure network. 

4.	 Using the information they received from eachother and their private 

keys, both Alice and Bob compute (kA*kB)*P = kA*(kB*P) = 

kB*(kA*P). This value is then the shared secret that only Alice and Bob 



possess. Note that the difficulty of the ECDLP ensures that the private 

keys kA and kB and the shared secrety (kA*kB)*P are difficult to 

compute given kA*P and kB*P. Thus, Alice and Bob do not 

compromise their private keys or their shared secret in the exchange.  

Now that Alice and Bob share this secret that is almost impossible for a third 

party to discover, they can use this shared secret in a classical cryptosystems to 

communicate securely over the network.  

The Elliptic Curve Discrete Logarithm Problem 

As stated before, the ECDLP is the problem of determining the integer k, given a 

rational point P on the elliptic curve E and the value of k*P. Elliptic curve cryptosystems 

rely on the difficulty of solving the ECDLP. If an eavesdropper is able to solve the 

ECDLP then the eavesdropper will be able to break the system. Therefore, it is of great 

importance to understand the methods of tackling the ECDLP. For, we can use the 

success of these methods as a measure of the security of the system.  

Many proponents of the use of elliptic curves in public key cryptography support 

their view based on a belief that the ECDLP is much more intractable that the DLP in 

finite fields. The strongest techniques normally used to solve the problem in finite fields 

are Shank’s baby-step giant-step algorithm, Pollard’s ρ-method, the Pohlig-Hellman 

method and the index calculus method. None of these methods works for the elliptic 

curve problem. Until 1990, the only discrete log algorithms that worked for elliptic 

curves were exponential time algorithms. These algorithms are general in that they 



worked for any group irrespective of group structure. In addition, they only work if the 

group order is divisible by some large prime. Therefore, it seemed like elliptic curves 

provided excellent security in public key cryptosystems due to the difficulty of solving 

the ECDLP. In 1993, the problem was reduced by Menezes, Okamoto and Vanstone from 

the ECDLP to the DLP on F*qk. However, this method only works for so-called 

supersingular curves such as curves of the form y2 = x3 + ax when the characteristic p of 

Fq is ≡ -1(mod 4), and curves of the form y2 = x3 + b when p ≡ -1(mod3); i.e. curves for 

which k is small. Their method is known as the MOV method. This method is only useful 

for a small class of elliptic curves because most elliptic curves are not supersingular. I 

will discuss here one of the methods for solving the DLP over a finite field, the index 

calculus method, and show how it breaks down in the case of the ECDLP.  

The Index Calculus Method 

The index calculus method provides a probabilistic subexponential algorithm that 

is adapted to the multiplicative group of a finite field. There are several index calculus 

methods but they all consist of two phases. Let the discrete logarithm l = logαβ. 

Definition: A non-deterministic algorithm with input size log n, is subexponential if there 

exists constants c>0 and α∈[0,1) such that the expected running time of the algorithm is 

in 

1−α )(c+o( ))(log1 n)α log (log n)L[α,c] = O (e 

For α = 0, a subexponential algorithm becomes polynomial and for α = 1, a 

subexponential algorithm becomes fully exponential.  



Phase 1: Collecting linear equations

Choose a “factor base” Γ = {γ1, γ2, … γt}of elements of a group G, with order n. In phase 

1, we will try to determine the discrete logarithms of the γi’s. To do this, we repeatedly 

choose random integers s∈ {0, 1, ….n-1}and compute αs. We then try to factor αs in Γ . 

If we do find an equation of the form 

t 
iαs = ∏γν

i

i= 1


then, we have the linear equation in Zn 

t 

s = ∑ν log α γ i .
i

i = 1


Sufficiently many of these equations will allow us to solve for the logα γi’s. 

Phase 2: Calculating individual logarithms.


We select random integers s and try to factor βα-s in Γ . If we succeed, we have the 


equation 


t 
iβα-s = ∏γν

i

i= 1


and so 

t 

logαβ = s + ∑ν log α γ i
i

i = 1


where all the numbers on the right hand side are known.  

This procedure allows one to calculate the discrete logarithm l as described above. 

We note that the procedure entails balancing the time allotted to each phase. A large 



factor group slows down phase 1 but speed up phase 2. Therefore, depending on how 

many discrete logarithms, in the same field, need to be calculated, we can choose an 

appropriate size for the factor base. 

In order to apply this procedure to finding discrete logarithms, we need to be able 

to choose a factor base, which can efficiently construct the equations above.  Suitable 

factor bases are known for finite fields and for class groups of imaginary quadratic 

number fields. The index calculus algorithms with the best-proven running times are 

those due to Pomerance for Fp and F2m, which run in L [ ,2
1 2 ]. 

Elliptic Curve Logarithms 

While the index calculus method solves the DLP for certain fields, it does not 

work on the ECDLP. In fact, the main advantage of using a cryptosystem based on 

elliptic curves is that no subexponential algorithms are known, except for some rare 

classes of curves. Miller argued and Silverman and Suzuki confirmed that an elliptic 

curve analogue of the index calculus method is unlikely to exist.  

For an elliptic curve S defined over the finite prime field Fp, the coefficients can 

be lifted to integers. Consider a possible lifting to EQ. If we restrict our curve to EZ(p), 

where Z(p) = {a/b ∈  Q : p does not divide b} is the localised ring of Z at p, then the 

coordinates of a point on EZ(p)  can be reduced modulo p to obtain a point on the curve 

EFp. We would then apply the index calculus method in the following way. Fix a factor 

base containing some points of EFp which are lifted to points on EZ(p) . Choose several 

random elements of EFp as described above and factor them lifting to point on EZ(p) and 



expressing them as a linear combination of the lifted factor base. The result is that the 

reduced points satisfy the same linear relation on EFp. 

The problem with this procedure is that no simple method is known for lifting 

points on EFp to points on EZ(p) . Moreover, in order to make the algorithm efficient, we 

need a factor base made up of only points of small height, where the logarithmic height 

of a point ⎛⎜
⎝
 d

x ,
 d
y ⎞⎟

⎠

 with x, y, d integers and gcd(x,y,d) = 1, is given by log max{|x|, |y|, 

|d|}. But the logarithmic heights of multiples nP of some point P say, grow quadratically 

in n. However, by the Mordell-Weil theorem, the maximum number of linearly 

independent points on a curve EQ, is finite, and is quite small in general. Thus, we 

conclude that there are probably not enough points of small height to construct a 

sufficiently large factor base. Thus, in general, the ECDLP appears to be unsolvable in 

polynomial time using the index calculus method. This is good news for public key 

cryptography based on elliptic curves, as we see that it is very difficult for an 

eavesdropper to obtain the shared secret between Alice and Bob if he intercepts the 

message being transferred. That is, due to the difficulty of the ECDLP, Diffie-Hellman 

key exchange is secure for public key cryptography based on elliptic curves.  
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