
Elliptic Curves in Public Key Cryptography:

The Diffie Hellman Key Exchange Protocol and its relationship to the Elliptic Curve

Discrete Logarithm Problem

Public Key Cryptography

Public key cryptography is a modern form of cryptography that allows different

parties to exchange information securely over an insecure network, without having first

to agree upon some secret key. The main use of public key cryptography is to provide

information security in computer science, for example to transfer securely email, credit

card details or other secret information between sender and recipient via the internet.

There are three steps involved in transferring information securely from person A

to person B over an insecure network. These are encryption of the original information,

called the plaintext, transfer of the encrypted message, or ciphertext, and decryption of

the ciphertext back into plaintext. Since the transfer of the ciphertext is over an insecure

network, any spy has access to the ciphertext and thus potentially has access to the

original information, provided he is able to decipher the message. Thus, a successful

cryptosystem must be able encrypt the original message in such a way that only the

intended receiver can decipher the ciphertext. The goal of public key cryptography is to

make the problem of deciphering the encrypted message too difficult to do in a

reasonable time (by say brute-force) unless certain key facts are known. Ideally, only the

intended sender and receiver of a message should know these certain key facts.

Any certain piece of information that is essential in order to decrypt a message is

known as a key. A key(s) specifies the particular function that transforms the original

message into ciphertext and vice versa. Public key cryptography relies on two keys, a

private key and a public key. The public key is published in a place where anyone has

access to it. However, each individual person or computer also chooses a private key that

should be known only to that individual. The importance of the key to the encryption

algorithm should be so great, that if the key is lost, it should be computationally

infeasible to recover the original message from the encrypted data.

In 1976, Diffie and Hellman proposed the use of certain one-way functions called

trap-door functions, to make it almost impossible to decipher encrypted data without a

key. The idea is that for each key k, we can choose an encryption function fk:M → C such

that it is almost impossible to compute fk
-1 without knowing k, in polynomial time. Here,

M is the set of messages and C is the set of ciphertext. Before we illustrate how the

cryptosystem works, we make a few observations about these trap-door functions. Firstly,

in order to avoid ambiguity in transferring messages, we insist that the encryption

function fk is injective. That is, each message m∈M corresponds to one and only one

ciphertext c∈C. If we choose M=C, then fk is a bijection and this implies that each

element of M must have an inverse in M. Therefore, it is natural to choose M to be a

group. Later, we will see that in elliptic curve cryptography, the group M is the group of

rational points on an elliptic curve. Before we delve into public key cryptography using

elliptic curves, I will give an example of how public key cryptosystems work in general.

Suppose person A want to send a message to person B. Person A chooses some

key, k, and an encryption function fk as defined above. Person A publishes fk, which is his

public key. Therefore, anyone who wishes to send a message to person A must look up

his encryption function fk, and encrypt their message using this function. Once the

message is encrypted, it is very difficult to decipher. This is why the trap door or secret

key is necessary. We call k, the secret key and only with the knowledge of k, can fk
-1 be

computed easily and hence the message decrypted. Person A is the only one who should

know the value of k and thus, person A is the only one who should be able to decrypt the

message.

There is one last point about the description of the trap door function fk that I have

left quite vague. That is, I have not said what it means for it to be “almost impossible” to

obtain fk
-1 from fk. In the language of complexity theory, “almost impossible to compute

fk
-1 from fk” means “impossible to compute fk

-1 from fk by a deterministic algorithm in

polynomial time”. Now, due to the unsolved nature of the P=NP problem, it is not

known whether there actually exists a trap door function. However, we do have functions

that behave like trap door functions in the time frame within which we are trying to solve

the problem i.e. “reasonable” time. However, what counts as reasonable time depends on

the level of security one desires. For example, for an intelligence agency, “reasonable

time” will be much longer than that for someone sending an e-card.

Diffie-Hellman Key Exchange

The cryptosystem we aim to achieve is one where the sender and receiver

exchange pieces of information via an insecure network resulting in both parties sharing a

common secret whereas anyone else who intercepts the transfer of the message, is unable

to discover the shared secret. This shared secret is what is used as a key in conventional

cryptosystems. Such a system is a full public key cryptosystem. We illustrate this key

exchange protocol with an example.

Alice and Bob aim to exchange information using a public key cryptosystem.

1.	 They publicly choose a cyclic group G and a generator x of G.

2.	 Alice and Bob choose private keys a and b respectively, where a and b are random

integers.

3.	 Alice computes xa, Bob computes xb and they exchange these values over an

insecure network.

4.	 On receiving the information from each other, both Alice and Bob compute the

avalue xab using their private keys and the fact that xab = (xa)b = (xb) .

Now, both Alice and Bob share a secret, namely, the value xab. That is, Alice and Bob

have exchanged a key, xab, that can now be used in a conventional cryptosystem to

encrypt any messages between Alice and Bob.

If the message was intercepted, the eavesdropper, in order to decipher the message, has to

obtain the value xab from x, xa and xb. This problem is called the Diffie-Hellman problem.

One way to tackle this problem is to try to compute a from xa. This is known as the

discrete logarithm problem.

With the basics of public key cryptography in hand, we are now in a position to

apply elliptic curves to public key cryptography in order to generate public and private

keys.

Elliptic Curve Cryptography

In 1985, Neal Koblitz and Victor Miller independently suggested the use of

elliptic curves in public key cryptography. Supporters of elliptic curve cryptography

(ECC) claim that ECC requires much smaller keys than those used in conventional public

key cryptosystems, while maintaining an equal level of security. The use of elliptic

curves therefore allows faster encryption and decryption.

We now recall a few facts about elliptic curves before illustrating the application

to public key cryptography.

Given an elliptic curve E and a field Fq, we consider the rational points E(Fq) of the form

(x,y) where both x and y belong to Fq. We choose the point at infinity to be σ.

1.	 Define the operation “+” on the set of rational points of E as follows. If P and Q

are two rational points on E, then P+Q is given by the following rule:

Draw the line joining P and Q, take the third point of intersection of this

line with the curve as R. Draw the line through σ and R, and take the third

point of intersection of this line with E. This point is the point P+Q. Note

the operation “+” is commutative.

In particular we have, σ+ σ= σ and P+(-P)= σ.

2.	 Define the operation “*” as follows * : Z× E(Fq) → E(Fq) and if P is some point

in E(Fq), then we define n*P as P+P+P+…..+P, n times. Note that for integers j

and k, j*(k*P) = (j*k)*P = k*(j*P).

3.	 The set of rational points on E form an abelian group under the operation “+” with

identity σ.

Definition: The elliptic curve discrete logarithm problem (ECDLP) is to determine the

integer k, given rational points P and Q on E, and given that k*P=Q.

Elliptic curve public key cryptography is based on the premise that the elliptic

curve discrete logarithm problem is very difficult; in fact, much more so than the discrete

logarithm function for a multiplicative group over a finite field. As mentioned before a

group is normally used in public key cryptography as the domain on which we define our

encryption function. This is because we need every element of our domain to have an

inverse and vice versa. In elliptic curve cryptography, the group used is the group of

rational points on a given elliptic curve.

This is how elliptic curve public key cryptography works. For Alice and Bob to

communicate securely over an insecure network they can exchange a private key over

this network in the following way:

1.	 A particular rational base point P is published in a public domain for

use with a particular elliptic curve E(Fq) also published in a public

domain.

2.	 Alice and Bob choose random integers kA and kB respectively, which

they use as private keys.

3.	 Alice computes kA*P, Bob computes kB*P and they exchange these

values over an insecure network.

4.	 Using the information they received from eachother and their private

keys, both Alice and Bob compute (kA*kB)*P = kA*(kB*P) =

kB*(kA*P). This value is then the shared secret that only Alice and Bob

possess. Note that the difficulty of the ECDLP ensures that the private

keys kA and kB and the shared secrety (kA*kB)*P are difficult to

compute given kA*P and kB*P. Thus, Alice and Bob do not

compromise their private keys or their shared secret in the exchange.

Now that Alice and Bob share this secret that is almost impossible for a third

party to discover, they can use this shared secret in a classical cryptosystems to

communicate securely over the network.

The Elliptic Curve Discrete Logarithm Problem

As stated before, the ECDLP is the problem of determining the integer k, given a

rational point P on the elliptic curve E and the value of k*P. Elliptic curve cryptosystems

rely on the difficulty of solving the ECDLP. If an eavesdropper is able to solve the

ECDLP then the eavesdropper will be able to break the system. Therefore, it is of great

importance to understand the methods of tackling the ECDLP. For, we can use the

success of these methods as a measure of the security of the system.

Many proponents of the use of elliptic curves in public key cryptography support

their view based on a belief that the ECDLP is much more intractable that the DLP in

finite fields. The strongest techniques normally used to solve the problem in finite fields

are Shank’s baby-step giant-step algorithm, Pollard’s ρ-method, the Pohlig-Hellman

method and the index calculus method. None of these methods works for the elliptic

curve problem. Until 1990, the only discrete log algorithms that worked for elliptic

curves were exponential time algorithms. These algorithms are general in that they

worked for any group irrespective of group structure. In addition, they only work if the

group order is divisible by some large prime. Therefore, it seemed like elliptic curves

provided excellent security in public key cryptosystems due to the difficulty of solving

the ECDLP. In 1993, the problem was reduced by Menezes, Okamoto and Vanstone from

the ECDLP to the DLP on F*qk. However, this method only works for so-called

supersingular curves such as curves of the form y2 = x3 + ax when the characteristic p of

Fq is ≡ -1(mod 4), and curves of the form y2 = x3 + b when p ≡ -1(mod3); i.e. curves for

which k is small. Their method is known as the MOV method. This method is only useful

for a small class of elliptic curves because most elliptic curves are not supersingular. I

will discuss here one of the methods for solving the DLP over a finite field, the index

calculus method, and show how it breaks down in the case of the ECDLP.

The Index Calculus Method

The index calculus method provides a probabilistic subexponential algorithm that

is adapted to the multiplicative group of a finite field. There are several index calculus

methods but they all consist of two phases. Let the discrete logarithm l = logαβ.

Definition: A non-deterministic algorithm with input size log n, is subexponential if there

exists constants c>0 and α∈[0,1) such that the expected running time of the algorithm is

in

1−α)(c+o())(log1 n)α log (log n)L[α,c] = O (e

For α = 0, a subexponential algorithm becomes polynomial and for α = 1, a

subexponential algorithm becomes fully exponential.

Phase 1: Collecting linear equations

Choose a “factor base” Γ = {γ1, γ2, … γt}of elements of a group G, with order n. In phase

1, we will try to determine the discrete logarithms of the γi’s. To do this, we repeatedly

choose random integers s∈ {0, 1, ….n-1}and compute αs. We then try to factor αs in Γ .

If we do find an equation of the form

t
iαs = ∏γν

i

i= 1

then, we have the linear equation in Zn

t

s = ∑ν log α γ i .
i

i = 1

Sufficiently many of these equations will allow us to solve for the logα γi’s.

Phase 2: Calculating individual logarithms.

We select random integers s and try to factor βα-s in Γ . If we succeed, we have the

equation

t
iβα-s = ∏γν

i

i= 1

and so

t

logαβ = s + ∑ν log α γ i
i

i = 1

where all the numbers on the right hand side are known.

This procedure allows one to calculate the discrete logarithm l as described above.

We note that the procedure entails balancing the time allotted to each phase. A large

factor group slows down phase 1 but speed up phase 2. Therefore, depending on how

many discrete logarithms, in the same field, need to be calculated, we can choose an

appropriate size for the factor base.

In order to apply this procedure to finding discrete logarithms, we need to be able

to choose a factor base, which can efficiently construct the equations above. Suitable

factor bases are known for finite fields and for class groups of imaginary quadratic

number fields. The index calculus algorithms with the best-proven running times are

those due to Pomerance for Fp and F2m, which run in L [,2
1 2].

Elliptic Curve Logarithms

While the index calculus method solves the DLP for certain fields, it does not

work on the ECDLP. In fact, the main advantage of using a cryptosystem based on

elliptic curves is that no subexponential algorithms are known, except for some rare

classes of curves. Miller argued and Silverman and Suzuki confirmed that an elliptic

curve analogue of the index calculus method is unlikely to exist.

For an elliptic curve S defined over the finite prime field Fp, the coefficients can

be lifted to integers. Consider a possible lifting to EQ. If we restrict our curve to EZ(p),

where Z(p) = {a/b ∈ Q : p does not divide b} is the localised ring of Z at p, then the

coordinates of a point on EZ(p) can be reduced modulo p to obtain a point on the curve

EFp. We would then apply the index calculus method in the following way. Fix a factor

base containing some points of EFp which are lifted to points on EZ(p) . Choose several

random elements of EFp as described above and factor them lifting to point on EZ(p) and

expressing them as a linear combination of the lifted factor base. The result is that the

reduced points satisfy the same linear relation on EFp.

The problem with this procedure is that no simple method is known for lifting

points on EFp to points on EZ(p) . Moreover, in order to make the algorithm efficient, we

need a factor base made up of only points of small height, where the logarithmic height

of a point ⎛⎜
⎝
 d

x ,
 d
y ⎞⎟

⎠

 with x, y, d integers and gcd(x,y,d) = 1, is given by log max{|x|, |y|,

|d|}. But the logarithmic heights of multiples nP of some point P say, grow quadratically

in n. However, by the Mordell-Weil theorem, the maximum number of linearly

independent points on a curve EQ, is finite, and is quite small in general. Thus, we

conclude that there are probably not enough points of small height to construct a

sufficiently large factor base. Thus, in general, the ECDLP appears to be unsolvable in

polynomial time using the index calculus method. This is good news for public key

cryptography based on elliptic curves, as we see that it is very difficult for an

eavesdropper to obtain the shared secret between Alice and Bob if he intercepts the

message being transferred. That is, due to the difficulty of the ECDLP, Diffie-Hellman

key exchange is secure for public key cryptography based on elliptic curves.

References

Enge, A. Elliptic Curves and their Applications to Cryptography; an Introduction (1999).

Koblitz, N. A Course in Number Theory and Cryptography (1994).

Koblitz, N. Algebraic Aspects of Cryptography (1998).

Koblitz, N. Towards a Quarter-Century of Public Key Cryptography (2000).

Silverman, J. and Tate, J. Rational Points on Elliptic Curves (2000).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

