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Hasse's Theorem and Rational Points on the General Conic

Diophantine Equations are equations to which only integer solutions or

alternatively rational solutions are considered. The study of these equations has

fascinated man for thousands of years. The ancient Babylonians enumerated Pythagorean

triples, integer solutions to the equation:

X2 + y2 = Z 2

The study of Diophantine equations continued through Greece and the Renaissance with

Diophantos, Fermat, Gauss and many others, and up to the present day in which Wiles'

very recent proof of Fermat's last theorem still astonishes mathematicians.

The 'natural' first case in which the problem of finding solutions to Diophantine

equations becomes nontrivial is the conic. Curves are classified by their genus, a certain

very useful topological invariant. The Diophantine theory of curves of genus zero is

nontrivial but complete. The Diophantine theory of curves of genus greater than zero

including elliptic curves is highly nontrivial and incomplete. However, many general

theorems exist and the theory is in constant development. In this paper we will detail the

theory for conics.

We define a point in the plane to be rational if its coordinates are rational. We

define a curve to be rational if it is given by an equation with rational coefficients. In this

paper we are concerned with finding rational points on rational curves.

The first case that one might wish to consider is that of the linear equation. Linear

equations pose no problems, especially if rational points are all that is desired, in which

case the set of rational points on a rational line (a line with rational coefficients) is

obviously in bijective correspondence with the rationals themselves by projection. In the
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case of a conic C with a known rational point, say p, the picture is almost as simple. One

simply notes that for any other rational point on C, the line passing through it and p is a

rational line. Similarly any rational line passing through p must intersect C in a second

(not necessarily distinct) rational point in the projective plane, since solving for this

intersection point amounts to solving a quadratic equation with one known rational root.

In this paper we assume a basic notion of the ideas of projective geometry. For

background see the appendix of Silverman and Tate. Thus, we may parameterize all of

the rational points on C by taking our rational parameter to be the slope of the line

passing through p. This rational parameterization gives an 'almost' (with the exception of

finitely many points) bijective correspondence between the rational points on the curve

and the rational points on the x-axis. We say that a curve whose rational points satisfy

such a correspondence is birationally equivalent to the line. But the question of the

existence of a rational point on a conic still remains. It turns out that over Q, a curve of

genus zero is birationally equivalent to either a line or a conic. So, in fact, the

characterization of the rational points on curves of genus zero is reduced to determining

whether a given conic has a rational point.

To see that not all conics have rational points, consider the curve

C: x2 + y2 = 3.

Converting to homogenous coordinates we have X2 + y2 = 3Z2. Again see the appendix

of Silverman and Tate if this process is not familiar to you. For any integer triple

(X, Y, Z) satisfying this homogenous equation, we can assume gcd(X, Y, Z) = 1. If 31X

then we see that 3 Y, so that finally 3IZ.This is a contradiction. It follows that
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X2 _ y2 - 1 (mod 3). But this implies the left hand side of the homogenous equation is

congruent to 2 (mod 3) while the right hand side is congruent to 0 (mod 3). It follows

there are no rational points on C.

In order to understand the formulation of Hasse's theorem, the theorem that

dominates the theory of curves of genus zero, we will first need to develop some of the

basic properties of p-adic numbers. Recall that the usual absolute value is a valuation on

Q. A valuation on a general field F is a function I.1:F -- R with the following properties:

(i) Ixl> O for all x E F - {OF}, and IOFI= 

(ii) Ixyl= Ixllyl, V x,y e F

(iii) Ix + Yl < Ixl + Y, V x,y E F.

Now in F, (_1)2 - 1, because ((-1)-I + 1)(1) = 1 + (-) = 0, so (-1)- ' = -1. Now we have

that 1112= 111,So 11 = 1, and 1-112= 11-= 1, so -l = 1 by property (ii) and more generally

I-rl Irl r E F.

There are other valuations on Q other than the standard absolute value. We claim

that the function I.1p,defined by Irlp= p'P for r # 0, where r has the unique expression

r = pPu/v, with p, u, v E Z, and p4'u, p'v, and 10lp= 0 is a valuation. It is easily seen that

this definition satisfies (i) and (ii). To prove it satisfies (iii), let rlIp= p-Pand Islp= p-a, say

r = pPu/v and s = p'm/n, and without loss of generality a > p. Then

r + s = pP(un + mvp ° - P)/vn (1)

so that Ir + sp < p-P. It is clear that in general we have V r, s E Q,

lr + sip< max{lrp, Islp} (2)
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If slp< Irlpor rip< slpthen we actually have

Ir + sip= maxIrip, Islp} (3)

since the numerator of (l)-assuming without loss of generality Islp< Irlp--cannot be

divisible by p. A valuation satisfying this ultrametric inequality (2), which is clearly

stronger than the triangle inequality (iii) is said to be nonarchimedian. This valuation

may seem to be very counterintuitive at first, but will soon prove to be tremendously

useful. Just remember that a reduced rational number is p-adically small if its numerator

is divisible by a high power of p and p-adically large if it's denominator is divisible by a

high power of p.

One of the many constructions of R from Q involves essentially extending Q by

defining the reals to be equivalence classes of Cauchy sequences where the classes are

defined by convergent. Recall that a Cauchy sequence is a sequence {an} with the

property that for every > 0 there exists N > 0 such that n > m > N implies lam- anl < ,

and a field is complete if every such sequence converges. Notice that the definition of

Cauchy sequence depends on the chosen valuation. This construction can be applied in

much the same way for each p to our valuation I.Ipto construct a p-adic field Qp that is a

completion of the field Q that is quite distinct from the usual completion R. Formally a

field K with valuation 11.11is a completion of a field F with valuation I.1if there exists a

field monomorphism

,: F-- K

with the property that llkall= lal V a EF, and the properties:

(i) K is complete with respect to 11.11
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(ii) K is the closure of X(F)in the topology on K generated by the metric

d(x, y) = Ilx - Yll.

We will assume that Qp satisfies the above properties. It can be shown that the

completion of a field always exists and is unique up to isomorphism. For more details on

the construction of Qp from Q see pp. 11-12 in Cassel's book. From now on we identify

Q with a subfield of Qp. Now that we have seen how the construction of Qp goes, let us

derive some of its fundamental properties.

We would hope that many of the properties of Qp would follow through from the

valuation .pon Q, just as is the case for R and Q with respect to the usual absolute

value. This is in fact the case, and we will denote the valuation on Qp by I.lpas suggestive

notation and in light of the fact that completions preserve valuation on the subfield.

Notice that by definition of closure of a topological space, for any a and b e Qp, we can

find for any > 0, r and s Q such that la - rlp< and lb - slp< . So we can see that

inequalities (2) and (3) must hold over Qp by relating these statements about elements of

Qp to statements about sufficiently close rationals, for which we have seen (2) and (3) do

hold. Note that the argument requires both the triangle inequality, as well as the fact that

Q is dense in Qp. We leave the details of the epsilon argument as an exercise to the

reader. Given a e Qp with a # 0, we can take r Q such that r - alp < lalp.It follows that

Irlp= lalpby (2) and the contrapositive of (3). Therefore, the values that .lptakes on Qp are

the same as those it takes on Q. We define the ring ofp-adic integers Zp to be

{a Qp I lalp< 1}. We leave it to the reader to prove the ring properties. We term the set

of elements of Qp with valuation 1the p-adic units.
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We now go back to the problem of deciding whether a conic has a rational point.

We express the equation of the conic in homogenous coordinates. The equation takes the

form:

C: F(X) = fijXiXj = 0

where X = (X 1, X2, X3), and in the sum, 1 < i, j < 3. Also define fji = fij for 1 < i <j < 3. In

other words, if i =~j, fij is one half the coefficient of XiXj in the expanded form of F.

Furthermore assume without loss of generality that the conic is nonsingular, or that

det(f) i 0 where f is the 3x3 matrix with fij = fij as defined above. We are free to do this

because the singular point of a rational conic must be rational point, so the question of the

existence of a rational point is settled in this case. We leave it to the reader to show the

equivalence of the singularity of f as a matrix and the existence of a point of singularity

of C. The following theorem completely characterizing the existence of a rational point

on a conic is due to Hasse, and is the goal of the remainder of the paper.

Hasse's Theorem: A conic C defined over Q has a rational point if and only if it has a

point over R and over Qp for every prime p.

Notice that necessity is trivial by the inclusion of Q in R and Qp. To show sufficiency we

begin by performing a linear change of variables to diagonalize the matrix f. Our linear

transformation T is of the form

TY=X

where Tij E Q and det(T) 0. Then Y is a rational point on C1 if and only if TY = X is a

rational point on C, where

Cl: G(Y) = fij (TY)i (TY)j.
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So if Hasse's theorem holds for C, then it holds for C. We can express our quadratic

form as:

F(X) = XT f X.

Our linear change of variables transforms our form into:

G(Y) = YT'(TT. f T) Y.

The theory of bilinear forms says that there is a basis with respect to which the form F is

orthogonal (see for example Artin). In other words we can transform F into the form

F(X) = fX 1
2 + f2X2

2 + f3X3
2, with firational and nonzero with an appropriately chosen

linear change of variable. We may now clear denominators so that fl, f2, f3 E Z. Now we

can divide through by any common prime factors so that gcd(fl, f2, f3) = 1. Finally if p

divides exactly two of the f, we can replace the variable corresponding to the other

coefficient, say Xj, by pXj and then divide through by p. In this way we can reduce F to

the form above where Hfi is square free.

Suppose as in the hypothesis of Hasse's theorem that for each prime p there is a

3-vector a = (a,, a2, a3) over Qp such that F(a) = 0. Since we know that the valuation I.lp

assumes the same values over Qp as over Q we multiply a by a sufficient power of p so

that max lailp= 1. We consider three cases, and derive conclusions in each that shall soon

be put to use in proving Hasse's theorem.

Case 1: p • 2, p ff 2f3. Assume without loss of generality that p I f, so that P4f2

and pf 3. Then we have that Iflal21p< 1. Suppose that la2lp< 1. Then we have that

Ifial2 lp = [f2a22+ f3a 3
2 1p< 1, so that f3a321p< 1 by (2) and (3) and la3lp < 1. But then we

have that Iflal2 p= 1f2a22+ f3a32Ip< p-2, so that lallp< 1, contrary to the condition that

max lailp= 1. It follows that la2lp = la3lp= 1. Now we have that



Dilip Das
18.704

Rogalski
If2a2

2 + f3a3
2Ip = If2 + f3(a3/a2 )2 p < 1, where a3/a2lp = 1. By definition of closure, there

exists s E Q such that If2 + f3s2lp< with Islp= 1. It is easy to prove using the fact that Fp

is a field that for each such s, there is a unique integer n {O(0,1, p-l } such that

Is- nip< 1. Take n to be this integer. Then

If2 + f3n2Ip If3
2 + f3S2Ip+ I f3 n2 - f3s2 p < 1/p + 1/p2 < 1. So there is some

n {O, 1,..., p-l} such that f2 + f3 n2 O (mod p).

Case 2: p = 2, 2ff 2 f3. Suppose without loss of generality that a3 is a unit. It

follows that at least one of al and a2 is a unit since 1 = f3a3212 = lflal2 + f2a2
2 12, so one of

f2a1
2 and f3a2

2 must have valuation 1by (2). Suppose both are units. For all rational units

r and s in Q2 we have that Ifir +f2s12 < 1, by looking at the parity of the numerator and

denominator. It follows that the same result must hold for all units in Q2 by a simple

epsilon argument. Therefore 1 = f3a32 12 = Ifial2 + f2a2
2 12 < 1, a contradiction. It follows

that precisely two of the ai are units, and so without loss of generality a2 and a3 are, and

lallp< 1/2,so that If2a2
2 + f3a32 p < /4. By the same logic as in case 1 we have that

f2 + f3n2 0 (mod 4) for some n {O, l }. Since f2 and f3 are odd, we have

f2 + f3 - (mod 4).

Case 3: p = 2, 21 ff 2f3. Without loss of generality 21fl. If a2 is not a unit, then we

have that If3a3
2 12 = fal 2 + f2a2

2 12 < /2, SOa3 is not a unit. But then,

Ifial21
2 = If2a2

2 + f3a3
2 12 < /4, so a is not a unit, contradictory to normalization. Therefore,

without loss of generality a2 and a3 are units. If al is not a unit, then we have that

Ifial212= If2a2
2 + f3a32 12 < /, so by the same logic as in cases 1 and 2, we have

f 2 + f3 - O (mod 8).
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If al is a unit, then for some rational units r, s, and t we have fir2 + f2s2 + f3t2 12 < 1/8 by

applying the definition of closure and using a simple epsilon argument. By clearing

denominators and using the fact that a2 - 1 (mod 8) for all integers a, we see that

ft + f2 + f3 O0(mod 8).

We now state without proof a theorem of Minkowski that is useful in proving

many number theoretic theorems such as the four squares theorem, and whose proof can

therefore be found in a number of elementary texts. See for instance Jones and Jones pp.

211.

Theorem: Let A be a subgroup of index m in the additive group Zn . Let C be a

symmetric convex set of volume

V(C) > 2nm.

Then C and A have a nonzero point in common.

We begin by defining a subgroup A of Z 3 by imposing various congruence

conditions according to the conditions derived supposing the hypotheses of Hasse's

theorem. Let x = (xl, x2, x 3)

Case 1: p 2, p I flf2f3. Recall without loss of generality plfl. We saw there exists

an integer n such that f2 + f3n2 0 (mod p). Impose the condition x3 - nx2 (mod p). We

then have F(x) = fix 1
2 + f2 x2

2 + f3X3
2 0 (mod p).

Case 2: p = 2, 2tff 2f3 . Recall without loss of generality f2 + f3 - (mod 4).

Impose the conditions xl - 0 (mod 2), x2 x-3(mod 2). This imples F(x) 0 (mod 4).

Case 3: p = 2, 21ff 2f3 . Recall without loss of generality 21f, and either
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f2 + f3 --0 (mod 8) or f + f2 + f3 0 (mod 8). So s2fi + f2 + f3 0 (mod 8), where s is

either 0 or 1. Impose the conditions x2 = x 3 (mod 4) and xl - sx2 (mod 2). These imply

F(x) - 0 (mod 8).

The subgroup A obtained by imposing all of these congruence conditions is of index

41flf2f31 in Z3 . This is because the each of the congruences in case 1 is with respect to

different primes and gives a subgroup of index p in Z3 , so by the Chinese Remainder

Theorem, the simultaneous imposition of these conditions gives a subgroup of index pi

in Z3, where the pi range over all primes not equal to 2 dividing ff 2f3. In the case that

24'ff2f3 the conditions in case 2 clearly give an index 4 subgroup of Z3 , and so by the

Chinese remainder theorem the simultaneous imposition of all the conditions in cases 1

and 2 give a subgroup of index 41flf2f31 in Z3 . In the case that 21flf2f3, the conditions in

case 3 clearly give an index 8 subgroup of Z3 , and so by the Chinese remainder theorem

the simultaneous imposition of all the conditions in cases and 3 give a subgroup of

index 41flf2f31 in 3. For all x E A we have that F(x) 0-(mod 41flf2f31).

We now apply Minkowski's theorem to A and the set

C: 2 + [f2x2 + f2x22 + f31x32 < 41ff2f31.

We see that C is clearly symmetric, and convex because it is an ellipsoid. Using the

volume formula for the ellipsoid we have V(C) = 32zg/3i(fif2) (f1f3) (f2f3) >23 14fif2f 31.

Applying Minkowski's theorem, we see that there exists a nonzero point y in A n C. We

have F(y) - 0 (mod 41fif 2f31) and IF(y)l Ifilyl2
+ f21Y22+ f 31Y3

2 < 41fif2f 31, so that F(y) = 0

as desired. This proves the existence of a projective point on our conic C given the

hypotheses of Hasse's theorem, and concludes the proof of Hasse's theorem.
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Notice that in addition to proving the existence of such a point, we have provided

for any conic C with a rational point an ellipsoid in which a corresponding homogenous

point can be found. So one can determine whether a given conic has a rational point in

finite time. Also, we have not used the hypotheses of Hasse's theorem for p42ff 2f3. The

reader may check that there always exist p-adic points on C for such primes and so we

gain no additional information by considering them. Finally, we have not used the

hypothesis of the existence of a point on C over R. In fact, this is implied by the

existence of points over Qp for every p. P-adic extensions are widely used in the theory of

rational points on curves of genus 1 and greater. The reader will thus find the present

paper to not only conclude the case of genus 0, but also to introduce valuable techniques

for further study of Diophantine equations.
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