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In this lecture (and henceforth) k denotes a perfect but not necessarily algebraically
¯closed field, and k denote a fixed algebraic closure of k.

19.1 Curves and function fields

Henceforth we adopt the following definitions.

Definition 19.1. A curve C/k is a smooth projective variety of dimension one defined
over k. A function field F/k is a finitely generated extension of k with transcendence
degree one, such that k algebraically closed in F .

Other authors distinguish the curves we have defined as nice curves: one-dimensional
¯varieties that are smooth, projective, and geometrically irreducible (irreducible over k); for

us varieties are geometrically irreducible by definition, so this last requirement is automatic.
But perhaps a more fundamental characterization is that nice curves are isomorphic to the
abstract curve defined by their function field.

In our definition of a function field, the requirement that k be algebraically closed in F
is not a serious restriction, it is automatically satisfied when F is the function field of a
curve C/k, so it is necessary for us to obtain the following equivalence of categories.1

Theorem 19.2. The category of curves C/k with nonconstant morphisms and the category
of function fields F/k with field homomorphisms that fix k are contravariantly equivalent
under the functor that sends a curve C to the function field k(C) and a nonconstant mor-
phism of curves φ : C1 → C2 defined over k to the field homomorphism φ∗ : k(C2)→ k(C1)
defined by φ∗f = f ◦ φ.

¯Proof. For k = k this follows from: (1) a nonconstant morphism of smooth projective curves
is surjective (Corollary 18.7), (2) a smooth projective curve is isomorphic to the abstract
curve defined by its function field (Theorem 18.10). The inverse functor sends F/k to the
smooth projective curve isomorphic to the abstract curve defined by F/k (Theorem 18.13),
which is unique up to isomorphism (Corollary 18.8).

¯For k = k, recall from Lecture 15 that if C1 is defined over k and the morphism φ : C1
¯ ¯

→
C2 is defined over k then the induced morphism of function fields k(C2) → k(C1) restricts
to a morphism k(C2)→ k(C1). Conversely, given a function field F/k with k a perfect field,
by Theorem 17.8 and Remark 17.9, we can write F = k(x, α), with α algebraic over the
rational function field k(x). If we then consider the minimal polynomial of α as an element
of k(x)[y] and clear denominators in the coefficients, we obtain an irreducible polynomial
f ∈ k[x, y]. Because k is algebraically closed in F , this polynomial remains irreducible as an

¯element of k[x, y] (by [1, III.3.6.8]), and therefore defines an affine variety of dimension one
in A2 whose ideal is generated by f ∈ k[x, y]. We may then take C/k to be the (projective)
desingularization of this affine variety, which is still defined over k.2

1This follows from [1, III.3.6.8] which implies that F/k is the function field of some curve C/k if and
only if k is algebraically closed in F (we can always use F to construct an algebraic set, but if k is not

¯algebraically closed in F this set will not be irreducible (over k), hence not a variety).
2The fact that the desingularization is defined over k is not obvious from our proof of its existence, but

it can be proved by other means (the assumption that k is perfect is necessary).
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From Theorem 19.2 we see that the study of curves and the study of function fields are
one and the same, a fact that we shall frequently exploit by freely moving between the two
categories. It is worth noting that this categorical equivalence does not hold for varieties of
dimension greater than one.

Definition 19.3. The degree of a morphism of curves φ : C1 → C2 is the degree of the
corresponding extension of function fields deg φ = [k(C1) : φ∗(k(C2))].

Remark 19.4. A note of caution. Since the field homomorphism φ∗ : k(C2) → k(C1) is
necessarily injective, it is standard practice to identify k(C2) with its image in k(C1). Under
this convention, one may then write deg φ = [k(C1) : k(C2)]. But the notation [L : K] for
the degree of a field extension L/K is ambiguous if K is simply a field embedded in L,
rather than an actual subfield. Without knowing the embedding, there is in general no way
to know what [L : K] actually is!

This does not cause a problem for number fields, but function fields are another story;
there are many different ways to embed one function field into another, and different embed-
dings may have different degrees. As a simple example, consider the map ϕ : k(x) → k(x)
that sends x to x2 and fixes k. The image of ϕ is a proper subfield of k(x) (namely, k(x2))
which is isomorphic to k(x) but not equal to k(x) as a subfield. Indeed, as a k(x2)-vector
space, k(x) has dimension 2, and we have [k(x) : ϕ(k(x))] = degϕ = 2 as expected. But
if we identify k(x) with its image ϕ(k(x)) then we would write [k(x) : k(x)] = 2, which is
confusing to say the least.

Corollary 19.5. A morphism of curves is an isomorphism if and only if its degree is one.

19.2 Divisors

¯Definition 19.6. Let C/k be a curve with k = k. A divisor of C is a formal sum

D :=
P

∑
nPP

∈C

with nP ∈ Z and all but finitely many nP = 0. The set of points P for which nP = 0 is
called the support of D. The divisors of C form a free abelian group under addition, the
divisor group of C, denoted DivC.

¯Definition 19.7. Let F/k be a function field with k = k. A divisor of F is a formal sum

D :=
∑

nPP
P∈XF

with nP ∈ Z and all but finitely many nP = 0. Here XF denotes the abstract curve
defined by F/k, whose points P are the maximal ideals of the discrete valuation rings of
F/k. The divisors of F form a free abelian group DivF under addition; if C is the smooth
projective curve with function field F , this group is isomorphic to DivC and we may use
them interchangeably.

We now want to generalize to the case where k is not necessarily algebraically closed.
¯ ¯Let Gk = Gal(k/k) be the absolute Galois group of k (as usual k is a fixed algebraic closure).
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Definition 19.8. A divisor D = nPP ∈ DivC is defined over k if for all σ ∈ Gk we
have Dσ = D, where

Dσ =

∑
(∑

nPP =

The subset of DivC defined over k forms the subgroup

) ∑
n σ
PP .

of k-rational divisors.

Note that D = Dσ does not necessarily imply P = P σ for all P in the support of D.
But if D = Dσ for all σ ∈ Gk, then it must be the case that nPσ = nP for all σ ∈ Gk. Thus
we can group the terms of a k-rational divisor into Gk-orbits with a single coefficient nP
applied to all the points in the orbit. Equivalently, we can view a k-rational divisor as a
sum over Gk-orbits of points P ∈ ¯C(k). This turns out to be a better way of defining the
group of k-rational divisors on a curve that is defined over k.

¯Definition 19.9. Let C/k be a curve defined over k. The Gk-orbits of C(k) are called
closed points, which we also denote by P . A rational divisor of C/k is a formal sum

D := nPP

where P ranges over the closed points of C/k

∑
, with nP ∈ Z and all but finitely many nP = 0.

The group of rational divisors on C is denoted Divk C.

¯For function fields F/k the divisor class group is defined exactly as when k = k. As
before, XF is the set of maximal ideals of discrete valuation rings of F/k, which we shall
henceforth call places of F/k in order to avoid confusion. The places of F/k are in one-
to-one correspondence with the closed points of the corresponding curve C/k. In the case

¯that k = k this follows from the Nullstellensatz, each point P on C is the zero locus of a
place of F/k (the maximal ideal mP ), and vice versa. When k is not algebraically closed
the same statement still holds, provided we replace “point” with “closed point”. To see

¯this, just apply the action of Gk to a point P ∈ C(k) and its corresponding maximal
ideal MP ∈ k̄[x1, . . . , xn]; the Gk-orbit of P is a closed point of C/k and the intersection
of k[x1, . . . , xn] with the union of the ideals in the Gk-orbit of MP is a maximal ideal of
k[x1, . . . , xn] whose reduction modulo I(C) is a place of F/k.

Remark 19.10. Be sure not to confuse the closed points of C/k with the set of rational
points C(k). The points in C(k) correspond to a proper subset of the set of closed points,

¯the trivial Gk-orbits that consist of a single element. But every point in C(k) is contained
in a closed point of C/k. Indeed, this is the key advantage to working with closed points;
they contain all the essential information about C/k (even in cases where C(k) is empty),

¯while allowing us to work over k rather than k, which has both theoretical and practical
advantages. But it is important to remember that the set of closed points depends on the
ground field k, not just C. We will consistently write C/k to remind ourselves of this fact.
In more advanced treatments one writes Ck and regards Ck and Ck′ as distinct objects for
any extension k′/k, even when the equations defining C are exactly the same; switching
from Ck to Ck′ is known as base extension.

Definition 19.11. Let f be a nonzero element of a function field F/k. The divisor of f is

div f :=
P

∑
ordP (f)P.

∈XF

Such divisors are said to be principal.3

3The principal divisor div f is also often denoted by (f), but we will not use this notation.

3



In order for the definition above to make sense, we need to know that ordP (f) is zero for
all but finitely many P . Under our categorical equivalence, we can assume that F = k(C)
for some curve C/k, which makes this easy to prove. Note that for any closed point, a
function f ∈ oin ∈ ¯k(C) vanishes at a p t P C(k) if and only if it vanishes on the entire
Gk-orbit of P . Thus it makes sense to say whether a closed point P of C/k lies in the zero
locus of f or not.

Theorem 19.12. Let F/k be a function field. For any f ∈ F× we have ordP (f) = 0 for
all but finitely many places P of F .

Proof. Let C be the smooth projective curve with function field k(C) ' F , and let us
identify F with k(C). Let f be a nonzero element of the coordinate ring k[C]. We then
have ordP (f) = 0 unless the closed point P lies in the zero locus of f . But the zero locus
of f is a closed set properly contained in the one-dimensional variety C (since f = 0), hence
finite. The general case f = g/h ∈ k(C) is similar, now ordP (f) = 0 unless P is in the zero
locus of either g or h, both of which are finite.

A sum of principal divisors is a principal divisor, since

div f + div g = div fg

(this follows from the fact that each ordP : k(C)× → Z is a homomorphism). We also have
div 1 = 0, thus the map k(C)× → Divk C defined by f 7→ div f is a group homomorphism.
Its image is Princk C, the group of k-rational principal divisors of C.

Definition 19.13. Let C/k be a curve. The quotient group

Pick C := Divk C/Princk C

is the Picard group of C (also known as the divisor class group of C). Elements D1 and D2

of Divk C that have the same image in Pick C are said to be linearly equivalent. We write
D1 ∼ D2 to indicate this equivalence.

Theorem 19.14. We have an exact sequence

1→ k× → k(C)× −div→ Divk C → Pick C → 0.

Proof. The only place where exactness is not immediate from the definitions is at k(C)×;
we need to show that ker div = k×. It is clear that k× lies in ker div; any f ∈ k× lies in
the unit group of every discrete valuation ring of k(C)/k, in which case ordP (f) = 0 for all
P . Equality follows from the fact that k is algebraically closed in k(C). This means that
k is equal to the full field of constants of the function field k(C)/k, which is precisely the
intersection of the unit groups of all the valuation rings of k(C)/k, equivalently, the set of
functions f ∈ k(C) for which ordP (f) = 0 for all P (another way to see this is to note that
if f is nonzero on every closed point of C/k, then the zero locus of f is the empty set and
therefore f is a unit in the coordinate ring).

Definition 19.15. For a principal divisor div f = n∑ PP , the divisors

div0 f = nPP and div

∑
f =∞

nP>0 n

∑
P<0

−nPP

are called the divisor of zeros and the divisor of poles of f , respectively. We have

div f = div0 f − div f.∞
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The quantities deg div0 f and deg div f count the zeros and poles of f , with appropriate∞
multiplicities. While is is intuitively clear that these two quantities should be equal (recall
that we can represent f as the ratio of two homogeneous polynomials of the same degree),
to prove this rigorously we will establish a more general result that tells us that the fibers
(inverse images) of a morphism of curves φ all have cardinality equal to deg φ, provided
that we count the points in each fiber with the correct multiplicities.

Remark 19.16. In what follows we work exclusively with morphisms φ : C1 → C2 defined
over k, by which we mean that both the curves and the morphism are over k. There are
situations where one does want to consider morphisms that are note defined over k (even
though the curves are defined over k), but in order to keep things simple we will not consider
this at this stage (we can always base extend to a field where everything is defined).

Lemma 19.17. Let φ : C1 → C2 be a morphism of curves defined over k and let P be a
closed point of C1/k. Then φ(P ) is a closed point of C2/k.

Proof. Let P be the Gk-orbit {P1, . . . , Pd}, where d = degP . We have φ(P )σ = φ(P σi i ) for
all σ ∈ Gk, since φ is defined over k, and it follows that the set φ(P ) = {φ(P1), . . . , φ(Pd)}
is fixed by Gk, hence a union of Gk-orbits. For each Pi we have Pi = P σ1 for some σ ∈ Gk,
and it follows that φ(Pi) = φ(P σ1 ) = φ(P1)

σ, show every φ(Pi) is in the Gk-orbit of φ(P1),
so φ(P ) consists of a single Gk-orbit and is a closed point.

With Lemma 19.17 in hand, we can now sensibly speak of a morphism φ : C1 → C2

defined over k as a map of closed points.

Definition 19.18. Let φ : C1 → C2 be a morphism defined over k, and φ∗ : k(C2)→ k(C1)
the corresponding morphism of function fields. The ramification index (also called the
ramification degree) of φ at a closed point P of C1 (equivalently, a place P of k(C1)) is

eφ(P ) := ordP (φ∗tQ),

where tQ ∈ k(C2) is a uniformizer at Q = φ(P ), that is, a generator for the place Q of k(C2).
If eφ(P ) = 1, then φ is unramified at P , and if eφ(P ) = 1 for all closed points P of C1/k
we say that φ is unramified.

Definition 19.19. Let φ : C1 → C2 be a morphism defined over k. The pullback map φ∗

on divisors is the homomorphism φ∗ : Divk C2 → Divk C1 defined by

φ∗(Q) :=
∑

eφ(P )P,

P∈φ−1(Q)

where (Q) denotes the divisor in Divk C2 with support {Q} and nQ = 1. We also define the
pushforward map φ on divisors as the homomorphism φ : DivC∗ ∗ 1 → DivC2 defined by

degP
φ (P ) = [k(P ) : φ∗(k(P ))]φ(P ) = φ(P ).∗

deg φ(P )

¯When k = k is algebraically closed, the pushforward map just sends the divisor (P ) to the
divisor (φ(P )), but in general we want to scale things so that deg φ (P ) = degP .∗
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It is clear that both φ∗ and φ are group homomorphisms, and if φ is unramified then∗
for all divisors D we have

φ (φ∗(D)) = deg(φ)D.∗

You will prove on the problem set that in fact this is true regardless; the composition φ∗◦φ∗
corresponds to multiplication by deg(φ) on Divk C2.

Remark 19.20. Using φ∗ to denote both the pullback map Divk C2 → Divk C1 and the
dual morphism k(C2) → k(C1) of function fields induced by φ : C1 → C2 might seem like
an unfortunate collision of notation, but it is standard and intentional. Recall that the
kernel of the divisor map div : C → Divk C is just k×, so up to scalars we can identify a
function f ∈ k(C) with the corresponding divisor div f ∈ Divk C. The pullback map φ∗

maps principal divisors to prinicipal divisors, thus for any f, g ∈ k(C2)
× we have

φ∗ div f = φ∗ div g ⇐⇒ φ∗f = λφ∗g for some λ ∈ k×.

Definition 19.21. Let C/k be a curve and let F/k be the corresponding function field.
If P is a closed point of C/k, or a place of F/k, we define the degree of P to be the dimension
of the residue field k(P ) = OP /mP over k (where mP = P if P is a place of F/k), that is,

degP := [k(P ) : k].

¯Equivalently, degP is the cardinality of the closed point P as a Gk-orbit of points in C(k)
(see [1, Cor. 3.6.5] for a proof of this equivalence, which depends on the fact that k is a
perfect field). The degree of a divisor D =

∑
nPP in the group of k-rational divisors is

degD :=
∑

nP degP.

¯Note that when k = k, we have degP = 1 for all P , so in this case degD = nP .

Theorem 19.22. Let φ : C1 → C2 be a morphism of curves defined over k.

∑
Then for each

closed point Q of C2/k,
deg φ∗(Q) = deg φ degQ

Here φ∗ is the pullback map on divisors. This theorem effectively says that the fibers
(inverse images of points) of the morphism φ all have cardinality equal deg φ, provided that
we count them correctly. Our definition of the degree of a divisor accounts for the size of

¯the Galois orbit corresponding to a closed point (so we are effectively counting k-points on
both sides), and the ramification index eφ incorporated in the definition of the pullback
map φ∗ correctly accounts for ramification.

We will prove Theorem 19.22 in the next lecture. Let us end this lecture by proving
that any nonzero function on a curve has the same number of zeros and poles. The proof is
essentially immediate from the definitions; in an advanced text it might be written in one
line or simply left to the reader. But we will take the time to unravel all the definitions in
gory detail, as this provides an excellent opportunity to check our understanding.

Corollary 19.23. Let f ∈ k(C)× for some curve C/k. Then f has the same number of
zeros and poles (counted with multiplicity), that is,

deg div0 f = deg div f.∞

If f ∈ k× then this number is 0, and otherwise it is equal to [k(C) : k(f)].
In any case, we always have deg div f = 0.
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Proof. For f ∈ k× we have div f = 0 and the corollary holds. Otherwise f is transcendental
over k (because k is algebraically closed in k(C)), and it defines a morphism f : C → P1

as follows: if f = g/h with g, h ∈ k[C] represented by homogeneous functions of the same
degree, with h nonzero, then the morphism f is given by (g : h).4 Recall that this represents
an equivalence class of tuples that we can scale by any λ ∈ k(C)×.

Let (x : y) be homogeneous coordinates for P1, and define 0 = (0 : 1) and ∞ = (1 : 0).
Note that 0 and ∞ are both rational points on P1, hence we may identify them with the
corresponding closed points (they are each the unique element of their Gk-orbit).

The place of k(P1) corresponding to the closed point 0 is (the maximal ideal of) the
discrete valuation that measures the order of vanishing of a homogeneous rational function
r(x, y) at (0 : 1), equivalently, it measures the order of vanishing of r(x/y, 1) at 0/1.
Similarly, the place corresponding to∞ measures the order of vanishing of r(x/y, 1) at 1/0,
equivalently, the order of vanishing of r(1, y/x) at 0/1.

The obvious choice of uniformizers for the places 0 and∞ are the functions t0 = x/y and
t = y/x. The images of these uniformizers under the field embedding f∗ : k(P1) → k(C)∞
induced by f are, by definition,

f∗t0 = t0 ◦ f = g/h = f,

f∗t = t∞ ∞ ◦ f = h/g = 1/f.

Now let us consider a closed point P of C for which f(P ) = 0 (so f(P ′) = 0 for any/all
points P ′ in the Gk-orbit P ). The ramification index of f at P is, by definition,

ef (P ) = ordP (f∗t0) = ordP (f).

If we instead consider a closed point P of C for which f(P ) =∞, we then have

ef (P ) = ordP (f∗t ) = ordP (1/f) =∞ −ordP (f).

Applying the pullback map f∗ : Div 1
k P → Divk C to the divisor (0) yields5

f∗(0) = ef (P )P = ordP (f)P.

f(

∑
P )=0 f(

∑
P )=0

But notice that the places P of k(C) where f has positive valuation correspond exactly
to the closed points P of C/k where f(P ) = 0 (hence we use the same symbol P in both
cases). Thus, by definition,

f∗(0) =

f(

∑
ordP (f)P = div0 f

P )=0

Similarly, the places where f has negative valuation are those where f(P ) = ∞ = (1 : 0),
equivalently, (1/f)(P ) = 0 = (0 : 1). Thus

f∗(∞) =
∑

ef (P )P =
∑

−ordP (f)P = div f.∞
f(P )=∞ f(P )=∞

4How do we know f is a morphism? Because every rational map from a (smooth projective) curve to a
projective variety is a morphism; see Corollary 18.7.

5Note that this is not the zero element of Divk C, which is the divisor whose support is the empty set.
The divisor (0) has support 0 .{ }
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Applying Theorem 19.22 to f : C → P1 with Q = 0 and Q =∞ (both of which have degree
one, since they are rational points), we have

deg div0 f = deg f∗(0) = deg f deg 0 = deg f = deg f deg∞ = deg f∗(∞) = deg div f,∞

where deg f = [k(C) : f∗(k(P1))] is the degree of f as a morphism.6 We know that k(P1)
is isomorphic to the field of rational functions k(t), thus the image of f∗ : k(P1)→ k(C) is
completely determined by the image of t (since f must fix k), and we have f∗(t) = t◦f = f ,
so deg f = [k(C) : k(f)]. Finally, we note that

deg div f = deg(div0 f − div f) = deg div f∞ 0 − deg div f = 0∞

as claimed.
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