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As usual, a curve is a smooth projective (geometrically irreducible) variety of dimension
one and k is a perfect field.

23.1 Genus zero curves with a rational point

Earlier in the course we showed that all plane conics with a rational point are isomorphic
to P1. We now show that this applies to any genus zero curve with a rational point.

Theorem 23.1. Let C/k be a curve with a rational point. Then C has genus zero if and
only if it is isomorphic to P1 (over k).

Proof. Every curve that is isomorphic to P1 has genus zero; this follows from Lemma 21.13
and the Riemann-Roch theorem. Conversely, for a curve of genus g = 0 with a rational
point P , the Riemann-Roch theorem implies

`(P ) = deg(P ) + 1− g = 1 + 1− 0 = 2,

since degP = 1 > 2g − 2 = −2. Thus there exists a non-constant function f ∈ L(P ), and
such an f has a simple pole at P and no other poles. It follows that div = degP = 1,
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hence f gives a degree-one morphism from C to P that is defined over k, since f ∈ k(C),
and this is an isomorphism (here we use Corollaries 19.3 and 19.5).

Remark 23.2. If C/k does not have a rational point, we might instead let P be any closed
point (these always exist). Everything in the above proof works except that now we have
div f = degP > 1. The function f still defines a morphism to P1, but it is not an∞
isomorphism because its degree is greater than one. But if we base extend C/k to a finite
extension k′/k over which the place P splits into degree one places, then we can show that
C/k′ is isomorphic to P1. So every curve of genus zero is isomorphic to P1 over a finite
extension of its ground field.

23.2 Genus one curves with a rational point

Theorem 23.3. Let C/k be a curve with a rational point. Then C has genus one if and
only if it is isomorphic to a plane curve of the form

y2 + a1xy + a3y = x3 + a 2
2x + a4x+ a6, (1)

with a1, a2, a3, a4, a6 ∈ k.

Proof. Let C/k be a curve of genus one with a rational point P . For any positive integer n
we have deg nP = n > 2g − 2 = 0, so by the Riemann-Roch theorem,

`(nP ) = deg(nP ) + 1− g = n+ 1− 1 = n.

In particular, L(2P ) has dimension 2. Clearly k ∈ L(2P ), since 0 ≥ −2P , so L(2P ) has
a k-basis of the form {1, x} for some x ∈ k(C) − k. The space L(3P ) contains L(2P ) and
has dimension 3, so it has a basis of the from {1, x, y} for some y ∈ k(C)×. The functions
1, x, y, x2 all belong to L(4P ) and have poles of distinct orders 0, 2, 3, 4 at P , respectively,
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thus they are linearly independent and form a basis for L(4P ). By the same argument,
(1, x, y, x2, xy) is a basis for L(5P ).

But L(6P ) contains both x3 and y2, as well as 1, x, y, x2, xy. Thus we have 7 elements in
a k-vector space of dimension 6, and these must satisfy a linear equation. This equation must
contain terms ax3 and by2 with a, b = 0 (otherwise we are left with a linearly independent
set of terms), and if we replace x by ax/b and y by by/a, after multiplying through by b3/a4

and homogenizing we obtain an equation in the desired form (1).
Now suppose we have a curve C/k defined by an equation of the form (1). If we

homogenize (1) and use projective coordinates (x : y : z), then P = (0 : 1 : 0) is a rational
point, and it is clearly the only point on C (rational or otherwise) with z = 0, since z = 0
forces x = 0 and all points (0 : y : 0) are projectively equivalent.

The function x (projectively represented as x/z) defines a morphism (x : z) from C
to P1 of degree [k(C) : k(x)] = 2, since k(C) = k(x, y) and the minimal equation of y over
k(x) has degree 2 (note that C is a curve, and in particular an irreducible algebraic set,
so equation (1) must be irreducible). It follows that div x = 2 (by Corollary 19.23), and∞
since the function x has a pole only at points with z-coordinate 0, it must have a double
pole at P . By the same argument, the function y has a pole of order 3 at P . The set of
functions {xiyj} contains elements with poles of order n = 2i + 3j at P for n = 0 and
all n ≥ 2, and none of these functions has any other poles. Thus we can construct a set
of n linearly independent functions with poles of order 0, 2, 3, . . . , n, all of which lie L(nP ).
Applying the Riemann-Roch theorem with n sufficiently large yields

n ≤ `(nP ) = deg(nP ) + 1− g = n+ 1− g,

so the genus g of C is at most 1.
To show that g = 0, consider the rational map ι defined by (x : −y − a1x − a3z : z).

The map ι leaves the RHS of (1) unchanged, and on the LHS we have

y(y + a1x+ a3z) 7→ (−y − a1x− a3z)(−y − a1x− a3z + a1x+ a3z) = (y + a1x+ a3z)y,

which is also unchanged, so ι is a morphism from C to itself. The morphism ι is clearly
invertible (it is its own inverse), so it is an automorphism. Let us now determine the points
fixed by ι. Clearly (0 : 1 : 0) is fixed, and a point with z = 0 is fixed if and only if
y = −y−a1x−a3z. Assuming char(k) = 2, this is equivalent to y = −(a1x+a3z)/2. There
are then three possibilities for x, corresponding to the roots of the cubic

x3 + a2x
2 + a4x+ a6z + (a1x+ a3z)

2/4.

These roots are distinct, since a repeated root would correspond to a singularity on the
¯smooth curve C. Thus ι fixes exactly 4 points in k(C). If g = 0, then C is isomorphic

to P1, by Theorem 23.1, and the only automorphism of P1 that fixes four points in P1 is the
¯identity map, by Lemma 23.7 below. But ι is clearly not the identity map on k(C), indeed,

it fixes only the 4 points already mentioned, thus g = 0.
If char(k) = 2 one needs a different argument to show g = 0; see [2].

Corollary 23.4. Every genus one curve C/k with a rational point is isomorphic to a plane
cubic curve.

Remark 23.5. It is also true that every (smooth) plane cubic has genus one, but we
won’t prove this here. The fact that genus one curves with a rational point can always be
embedded in P2 is noteworthy; the corresponding statement is already false in genus 2.
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Remark 23.6. The automorphism ι used in the proof of Theorem 23.3 is an example of
an involution, an automorphism whose composition with itself is the identity map.

We now prove the lemma used in the proof of Theorem 23.3.

Lemma 23.7. Suppose φ is an automorphism of P1 ¯that fixes more than 2 points in P1(k).
Then φ is the identity map.

Proof. Without loss of generality, we assume φ fixes the point = (1 : 0); if not we can
apply a linear transformation to P1

∞
that moves a point fixed by φ to . The restriction φa

of φ to A1 ¯
∞

(k) = P1 ¯(k)−{∞} is then a bijection, and also a morphism of affine varieties. As
a morphism from A1 → A1 the map φa is a polynomial map, say φa = (f), and f must have
degree one since φa is a bijection. If the equation f(x) = x has more than one solution,
then both sides must be equal as polynomials of degree one (two points uniquely determine
a line), but then φa is the identity map.

Remark 23.8. One can extend the argument above to show that every automorphism of
P1 is a rational function of the form (ax+ by)/(cx+ dy) with ad− bc = 0, also known as a
Möbius transformation. It is easy to see that every non-trivial Möbius transformation fixes

¯exactly 2 points (over k); they correspond to rotations of the Riemann sphere.

Definition 23.9. Equation (1) in Theorem 23.3 is called a Weierstrass equation.

Remark 23.10. There is no a5 in a Weierstrass equation. As can be seen from the proof
of Theorem 23.3, each coefficient ai appears in front of a function with a pole of order 6− i
at the given rational point (and no other poles). There are no functions with only a single
pole of order 6 − 5 = 1 on a curve of genus one (indeed, such a function would give an
isomorphism to P1).

Lemma 23.11. Let C/k be a curve defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

If the characteristic of k is not 2 (resp. not 2 or 3) then a1 and a3 (resp. a1, a2, and a3)
can be made zero via a linear change of coordinates.

Proof. If char(k) = 2 then we can complete the square on the LHS, writing it as

(y + (a1x+ a3)/2)2 − (a1x+ a3)
2/4.

Setting u = y + (a1x+ a3)/2) and moving the remaining terms to the RHS yields

u2 = x3 + a′2x
2 + a′4x+ a′6,

for some a′2, a
′
4, a
′
6 ∈ k. If we also have char(k) = 3, we can depress the cubic on the RHS

by setting v = x+ a′2/3, yielding

u2 = v3 + a4
′′v + a6

′′

with a4
′′ ′′
, a6 ∈ k.

Definition 23.12. A Weierstrass equation with a1a2a3 = 0 is a short Weierstrass equation.
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Lemma 23.13. The short Weierstrass equation y2 = x3 − a4x − a6 defines a genus one
curve if and only if 4a34 + 27a26 = 0.

Proof. The partial derivatives of f(x, y, z) = y2z − x3 − a4xz2 − a6z3 are

∂f/∂x = −3x2 − a4z2,
∂f/∂y = 2yz,

∂f/∂z = y2 − 2a4xz − 3a6z
2.

Let X be the zero locus of f in P2. If P = (x0 : y0 : z0) is a singular point of X, then z0 = 0
(otherwise we must have x0 = y0 = 0, but this is not a valid projective point). We then
have y0 = 0, (a) 3x20 + a 2

4z0 = 0, and (b) 2a4x0z0 + 3a6z
2
0 = 0. Writing x0 = −3a6z0/(2a4)

via (b) and plugging into (a) gives

3(−3a 2
6z0) /(2a4)

2 + a4z
2
0 = 0

27a2 + 4a36 4 = 0.

The calculations above are reversible, so X has a singular point if and only if 4a34+27a26 = 0.
If X has no singular points then it must be irreducible; it is a hypersurface in P2 and it were
the union of two or more curves, then the intersection points would be singular. Thus X
is a curve defined by a Weierstrass equation with the rational point (0 : 1 : 0), so by
Theorem 23.3 it has genus one.

In what follows we may assume for the sake of simplicity, that the characteristic of k is
not 2 or 3 so that we can work with short Weierstrass equations; everything we do can be
extended to the general case, the equations are just more complicated to write down.

23.3 Elliptic curves

Definition 23.14. An elliptic curve E/k is a genus one curve with a distinguished rational
point O. Equivalently, an elliptic curve is a curve E/k defined by a Weierstrass equation
with the distinguished rational point O = (0 : 1 : 0).

Notice that an elliptic curve E/k is, strictly speaking, more than just the curve E, it is
the pair (E,O). If E has two rational points, say O1 and O2, then (E,O1) and (E,O2) are
two different elliptic curves. In practice one typically works with elliptic curves given by
Weierstrass equations, in which case the point O is always taken to be the point (0 : 1 : 0)
at infinity; thus we may refer to E/k as an elliptic curve without explicitly mentioning O.

Remark 23.15. Elliptic curves are obviously not ellipses (ellipses are curves of genus zero),
but there is a connection. If one attempts to compute the circumference of an ellipse with
semi-major axis a and eccentricity e by applying the arc-length formula, one finds that the
circumference is given by

4a

∫ 1

0

√
1− e2t

dt.
1− t2

This is known as an elliptic integral (incomplete, and of the second kind), and it does not
have a simple closed form. However, the integrand u(t) satisfies the equation

u2(1 t2) = 1 e2t2,
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and this defines a genus one curve with a rational point, an elliptic curve.1 The theory of
elliptic curves originated in the study of solutions to integrals like the one above, leading
to the notion of elliptic functions that arise in complex analysis as solutions to non-linear
differential equations that correspond to Weierstrass equations.

Theorem 23.16. Let E/k be an elliptic curve with distinguished point O. The map φ that
sends the point P ∈ E(k) to the class of the divisor P − O in Pic0k(E) is a bijection. This
induces a commutative group operation on E(k) defined by

P 1
1 + P2 := φ− (φ(P1) + φ(P2)),

in which O acts as the identity element.

Proof. We first show that φ is injective. If P − O ∼ Q − O then P ∼ Q. We then have
div f = P − Q for some f ∈ k(E). If f is nonzero then it gives an isomorphism E → P1,
which is impossible, since E has genus one. So P = Q and φ is injective.

Now suppose D is any divisor of degree 0. Then D +O has degree 1 ≥ 2g − 1 = 1, and
by the Riemann-Roch theorem

`(D +O) = deg(D +O) + 1− g = 1 + 1− 1 = 1,

so there is a nonzero f ∈ L(D+O) such that div f+D+O ≥ 0. But deg(div f+D+O) = 1,
so we must have div f +D +O = P for some P ∈ E(k). Thus D ∼ P −O.

Thus the set of rational points E(k) form an abelian group. The same applies to every
base extension of E, so we the set E(k′) is also an abelian group (also with O as the
identity), for any extension k′/k; this follows from the fact that the genus of a curve is
preserved under base extension (of a perfect field), so E/k′ is also an elliptic curve.2

We now want to describe the group operation more explicitly. For this purpose we use
the following construction. Let us assume our elliptic curve E/k is given by a Weierstrass
equation, hence embedded in P2. If L is a line in P2 defined by a linear form (a homogeneous
polynomial of degree one) with coefficients in k, then the intersection (L ∩ E) corresponds
to a divisor in DL = Divk E of degree 3. This follows from Bezout’s Theorem, and the fact
that (L ∩ ¯E) is fixed by the action of Gk = Gal(k/k); the set (L ∩ E) is a union of Galois
orbits, each a closed point of E/k, and each occurs in DL with multiplicity corresponding

¯to the intersection number of E and L at each k-point in the orbit (these all must coincide).

Lemma 23.17. Let E/k be an elliptic curve in P2, and let L1, L2 be lines in P2 defined
by linear homogeneous polynomials `1, `2 ∈ k[x, y, z]. Let f ∈ k(E) be image of `1/`2 under
the map k(P2)→ k(E) induced by the inclusion E ⊆ P2. Then

div f = (L1 ∩ E)− (L2 ∩ E).

Proof. This follows from Bezout’s theorem and the discussion above.

We now give an explicit description of the group operation on an elliptic curve E(k)
defined by a Weierstrass equation. Any two points P and Q in E(k) uniquely determine a
line L1 that is defined over k (if P = Q then take the line tangent to E at P = Q). By
Bezout’s Theorem, L∩E contains a third point R, and this point must lie in E(k) because

1The given equation is singular at u = 0 and t = ±1, but its desingularization is an elliptic curve.
2This is not always true when k is not perfect.
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P , Q, and L1 ∩E are all fixed by Gk. If we now let L2 be the line z = 0 at infinity, and let
`1 and `2 be the linear forms defining L1 and L2, then

div `1/`2 = (L1 ∩ E)− (L2 ∩ E) = P +Q+R− 3O = (P −O) + (Q−O) + (R−O)

since O is the only point on E with z = 0 (so by Bezout’s Thoerem, the intersection number
IP (L2 ∩ E) must be 3). This divisor is principal, hence equivalent to the zero divisor, and
in terms of the group operation on E(K) this implies

P ⊕Q⊕R = O,

where the symbol ⊕ denotes the group operation on E(k).3 and we recall that O is the
identity element of the group operation. This is summed up in the following corollary.

Corollary 23.18. Let E/k be an elliptic curve defined by a Weierstrass equation. The sum
of any three points in E(k) that lie on a line is zero under the group law on E(k).

Corollary 23.18 completely determines the group operation on E(k). To avoid ambiguity,
we will temporarily use ⊕ to denote the group operation on E(k), in order to distinguish it
from addition in Divk E. Given any two points P and Q we compute their sum R = P ⊕Q
by noting that P ⊕ Q = R holds if and only if P ⊕ Q 	 R = O, so we may compute the
negation of R as the third point on the line determined by P and Q. To get R itself, we
use the fact that R 	 R = O if and only if O ⊕ R 	 R = O, so we obtain R as the third
point on the line determined O and the negation of R. To sum up, the group law on E(k)
can be defined as follows.

Corollary 23.19 (Geometric group law). Let P and Q be rational points on elliptic curve
embedded in P2. Then P ⊕Q is the negation of the third point in the intersection of E and
the line uniquely determined by P and Q.

For explicit computations, we can use the Weierstrass equation for E to compute the
coordinates of the point P ⊕ Q as rational functions of the coordinates of P and Q. The
case where either P or Q is equal to O is obvious, so we assume otherwise, in which case
neither P nor Q lies on the line z = 0 at infinity and we can work in the affine patch z = 0.

In order to simplify the formulas, let us assume that char(k) = 2, 3 so that E/k can be
defined by a short Weierstrass equation

y2 = x3 + a4x+ a6. (2)

The additive inverse of any affine point P = (x0 : y0 : 1) is (x0 : −y0 : 1), since the third
point on the line x− x0z determined by P and O (and of course O is its own inverse).

We now consider how to compute the sum of two affine points P1 = (x1 : y1 : z1) and
P2 = (x2 : y2 : z2). Let us first dispose of some easy cases. If x1 = x2 then y1 = ±y2,
and if y1 = −y2 then P2 is the negation of P1 and their sum is O, so we assume this is not
the case. We then have two possibilities, either x1 = x2, or P1 = P2. In the latter case, if
y1 = 0 then P1 = P2 is its own negation (a point of order two) and P1 ⊕ P2 = O.

In every other case the slope λ of the line L determined by P1 and P2 is given by

y2
λ =

− y2 3x2
(x P

− 1 = x2), λ = 1 + a4
( 1 = P2 and y1 = 0),

x2 x1 2y1
3We use ⊕ here to avoid confusion with the symbol + used to denote addition of divisors (and to write

divisors as formal sums of closed points); later, when there is no risk of confusion we will simply use + to
denote the group operation on E(k).
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and (y − y1) = λ(x− x1) is the equation for L.
Substituting this into (2) gives the cubic equation

(λ(x− x1) + y1)
2 = x3 + a4x+ a6

0 = x3 − λ2x2 + · · · ,

whose solutions are precisely x1, x2, and x3. We now observe that the sum of the roots of any
cubic polynomial are equal to the negation of its quadratic coefficient, so x1 +x 2

2 +x3 = λ .
This determines x3; plugging x3 into the equation for L and negating the result gives y3.

Theorem 23.20 (Algebraic group law). Let E/k be an elliptic curve given by the short
Weierstrass equation y2 = x3 + a4x + a6. If P1 = (x1 : y1 : 1) and P2 = (x2 : y2 : 1) are
affine points whose sum is an affine point P3 = (x3 : y3 : z3), then

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

where λ = (y2 − y1)/(x2 − x1) if P1 = P2 and λ = (3x21 + a4)/(2y1) if P1 = P2.

Remark 23.21. One can define the group operation on E(k) directly via either Corol-
lary 23.19 or Theorem 23.20 (and one can extend Theorem 23.20 to general Weierstrass
equations). But in order to show that this actually makes E(k) a group, one must verify
that the group operation is associative, and this is a surprisingly non-trivial exercise. The
advantage of using the bijection between E(k) and Pic0k E given by Theorem 23.16 to define
the group operation is that it is clear that this defines a group!

It follows from Theorem 23.20 that for any fixed point P ∈ ¯E(k), the translation-by-P
map τP that sends Q to P ⊕Q can be defined as a rational map (hence a morphism) from E
to itself; it clearly has an inverse (replace P with its negation), so τP is an automorphism.
The same is true of the negation map that sends P to its additive inverse. See [2, III.3.6]
for details.

23.4 Abelian varieties

A variety whose points form a group such that the group operations are defined by mor-
phisms, is called an algebraic group. More generally, this terminology is also applied to any
open subset of a variety (a quasi-variety). Examples include A1, with the group operation
given by addition of coordinates, and the general linear group GLn, which can be viewed

2
as an open subset of An corresponding to matrices with nonzero determinant.

It follows from Theorem 23.20 that an elliptic curve is an algebraic group, and in fact
an abelian variety.

Definition 23.22. An abelian variety is a projective algrebraic group.

It follows from Theorem 23.20 that an elliptic curve is an abelian variety of dimension
one. In fact, one can show that every abelian variety of dimension one is isomorphic to
an elliptic curve. It might seem strange that the definition of an abelian variety does not
include the requirement that group actually be abelian. This turns out to be a necessary
consequence of requiring the algebraic group to be a projective variety. We will only prove
this for abelian varieties of dimension one, but it is true in general.
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Theorem 23.23. An abelian variety is an abelian group.

Proof in dimension one. Let G be an abelian variety of dimension one, and for any h ∈ G
consider the morphism φh : G → G defined by φh(g) = g−1hg. Since G is a projective
variety (hence complete), the image of φh is also a projective variety, which must be either
a point or all of G. Let e be the identity element of G. For h = e image of φh is clearly just
the point h = e. For h = e the image of φh cannot contain e, because g−1hg = e implies
hg = g and h = e. So the image of φh is a always a point, and it must be the point h, since
φh(e) = h. Thus for all g, h ∈ G we have φh(g) = g−1hg = h, equivalently, hg = gh, so G
is abelian.

The proof of Theorem 23.23 in the general case is essentially the same; one first shows
that the dimension of imφh must be the same for every h ∈ G, and since dim imφe = 0, the
image φh is a point for every h ∈ G and the proof then proceeds as above; see [1, §4.3].

Now that we know abelian varieties are in fact abelian, we will write the group operation
additively. When working with morphisms of abelian varieties it is natural to distinguish
morphisms φ that preserve the group structure, that is, we would like φ(g+h) = φ(g)+φ(h).
An obvious necessary condition is φ(0) = 0. This turns out to be sufficient.

Theorem 23.24. Let φ : G → H be a morphism of abelian varieties for which φ(0) = 0.
Then φ is a group homomorphism.

Proof. For each h ∈ G let φh : G → H be the morphism φh(g) = φ(g) + φ(h) − φ(g + h).
Then φ0(g) = φ(0) + φ(g)− φ(g + 0) = 0 for all g ∈ G. As in the proof of Theorem 23.23,
the image of φh is a single point for all h ∈ G, and since φh(0) = φ(0)+φ(h)−φ(0+h) = 0,
that point must be 0. It follows that φh(g) = 0 for all g, h ∈ G, therefore we always have
φ(g) + φ(h) = φ(g + h) and φ is a group homomorphism.
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