
LECTURE 21

Artin and Brauer Reciprocity, Part I

Let F/Q be a global field, so that we have an exact sequence

1→ F× ↪→ A×F → CF → 1,

where CF := A×F /F×. Last time, we almost showed that for a cyclic degree-n
extension E/F , we have χ(CE) = n; it remains to prove Lemma 20.14.

Lemma 21.1. Let L/K be an extension of infinite fields, A be a K-algebra, and
M and N be two A-modules that are finite dimensional over K with M projective
over A. If M ⊗K L ' N ⊗K L as A⊗K L-modules, then M ' N .

Proof. First note that there is an isomorphism

(21.1) HomA(M,N)⊗K L
∼−→ HomA⊗KL(M ⊗K L,N ⊗K L).

Indeed, because M is a finitely generated projective module, it is a summand of
a finite-rank free module, which reduces us to the case M = A (since the Hom
functor commutes with direct sums). Then both sides of (21.1) reduce to N ⊗K L.
(In fact, a more basic identity holds in greater generality: HomA(M,N ⊗A P ) =
HomA(M,N)⊗A P for an arbitrary algebra A as long as P is flat and M is finitely
presented, i.e., An1 → An2 →M → 0 is exact for some n1, n2 ∈ Z).

Observe that both M ⊗K L and N ⊗K L have the same dimension over L,
hence M and N have the same dimension d over K. Let V := HomA(M,N) and
W := HomA(ΛdM,ΛdN), where Λd(−) denotes the dth exterior power. Both of
these are finite-dimensionalK-vector spaces; in particular, V is d2-dimensional, and
W is 1-dimensional, i.e., isomorphic toK. Functoriality of Λd gives the determinant
map det : V →W , which is a polynomial map of degree d with coefficients in K, in
the sense that after choosing bases of V andW , it is given by a degree-d polynomial
in coordinates (as it is computed as the determinant of a d× d matrix in V ). We’d
like to show that the map det is non-zero, as a point ϕ ∈ V with detϕ 6= 0 is
the same as an A-module isomorphism M ' N . Since K is infinite (and det is
polynomial), it suffices to check this after extending scalars to L, which by (21.1)
gives a determinant map

HomA⊗KL(M ⊗K L,N ⊗K L)→ HomA⊗KL(Λd(M ⊗K L),Λd(N ⊗K L)) ' L.

Since the left-hand side contains an isomorphism M ⊗K L ' N ⊗K L, this map
must be non-zero, as desired. �

Proof (of Lemma 20.14). The issue here is that Λ1 and Λ2 might not be
commensurate (i.e., each is contained in the other up to a finite index and multi-
plication). However, we claim that Λ1 ⊗Q ' Λ2 ⊗Q as Q[G]-modules. Indeed, by
Lemma 21.1, it suffices to show that Λ1⊗R ' Λ2⊗R as R[G]-modules, which is clear
as Λi⊗R ' V for i = 1, 2. Thus, taking the image of Λ2 under this isomorphism, and
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tensoring with R to obtain inclusion in V , there exists a G-stable lattice Λ3 ⊆ V
that is isomorphic to Λ2 as a Z[G]-modules and commensurate with Λ1. Thus,
NΛ3 ⊆ Λ1 ⊆ 1

NΛ3 for some sufficiently large N , hence χ(Λ1) = χ(Λ3) = χ(Λ2) as
all subquotients are finite, as desired. �

We now turn to a discussion of local Kronecker–Weber theory.

Theorem 21.2. For any prime p,

Qab
p =

[ ⋃
n≥0

Qp(ζpn)

]
·Qunr

p ,

where this is the compositum with the non-completed maximal unramified extension
of Qp.

Proof. Recall that the extensions Qp(ζpn)/Qp are totally ramified, with Ga-
lois groups (Z/pnZ)×. Thus, K ⊆ Qab

p , where we have denoted the right-hand side
by K, and this gives a map

Z×p × Ẑ = Q̂×p = Gal(Qab
p /Qp)� Gal(K/Qp) =

[
lim←−
n

(Z/pnZ)×
]
× Ẑ,

where the left-most equalities are by lcft, followed by choice of a uniformizer of
Qp; the map is surjective by Galois theory. Since both sides are isomorphic as
abstract groups, the following lemma shows that this map is an isomorphism. �

Lemma 21.3. Let G be a profinite group, such that for all n > 0, the number of
open subgroups of index n in G is finite (i.e., G is “topologically finitely generated”).
Then every continuous homomorphism ϕ : G� G is an isomorphism.

Proof. If H ⊆ G is a subgroup of index at most n, then ϕ−1(H) ⊆ G is also
a subgroup of index at most n. Thus, we have a map

{H ⊆ G : [G : H] ≤ n}
ϕ−1

↪−−→ {H ⊆ G : [G : H] ≤ n},
which is injective as ϕ is surjective. By hypothesis, this set is finite, hence this map
is bijective. Since

Im(ϕ−1) = {H ⊆ G : [G : H] ≤ n,Ker(ϕ) ⊆ H},
it follows that Ker(ϕ) is contained in every finite-index subgroup of G, hence Ker(ϕ)
is trivial and ϕ is an isomorphism. �

We now ask: what is the automorphism of Z×p ×Ẑ in the proof of Theorem 21.2?
The following theorem of “explicit cft” answers this question, but the proof is
involved and not at all obvious (see [Dwo58]). An answer to the analogous question
for global fields is not known in general, aside from the cases of Q and imaginary
number fields.

Theorem 21.4 (Dwork, Lubin–Tate). (1) The element p ∈ Q×p acts triv-
ially on

⋃
nQp(ζpn) and acts as the Frobenius element on Qunr

p .
(2) An element x ∈ Z×p acts trivially on Qunr

p and acts by x−1 on
⋃
nQp(ζpn),

i.e., θp(x) · ζpn = ζ
(x−1 mod pn)
pn , where

θp : Q×p → Gal
(⋃

n

Qp(ζpn) ·Qunr
p

/
Qp
)
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is the homomorphism provided by lcft.

There are two reciprocity laws which we’d now like to introduce: Artin reci-
procity, and Brauer reciprocity. We’ll begin with the former. Let E/F be an abelian
G-Galois extension of global fields. Recall that we expect to have

F×\A×F /N(A×E) = CF /N(CE)
∼−→ G.

We’d like to construct this map.

Claim 21.5. lcft gives us a map θ : A×F → G with θ(N(A×E)) = 1.

Proof. Let x ∈ A×F . For each v ∈ MF , we have an element xv ∈ F×v , and
lcft then gives a map

θv : F×v → Gal(Ew/Fv) ⊆ Gal(E/F ) = G

for a place w | v of E, where the former is the decomposition group of E/F at v.
This embedding is induced by the embedding E ⊆ Ew. Recall that when E/F is
abelian, Gal(Ew/Fv) is independent of the choice of w.

We now claim that the product

θ(x) :=
∏
v∈MF

θv(xv)

makes sense, that is, θv(xv) = 1 for all but finitely many v. Indeed, for almost all
v, Ew/Fv is unramified and xv ∈ O×Fv , implying that θv(xv) = 1 (since by lcft,
the map θv kills O×Fv and sends a uniformizer of Fv to the Frobenius element of G).

Since θv(N(E×w )) = 1 for all v ∈MF , we have θ(N(A×E)) = 1, as desired. �

Theorem 21.6 (Artin Reciprocity). We have θ(F×) = 1, hence θ gives a map
CF /N(CE)→ G.

Example 21.7. If E/Q is a quadratic extension, this reduces to quadratic
reciprocity. Indeed, the local Artin maps are simply given by Hilbert symbols, and
from here we proved the implication.

We will proof this concurrently with Brauer reciprocity. Let E/F be a finite
G-extension of global fields. We have

H2(G,A×E) =
⊕
v∈MF

Br(Fv) =
⊕

v∈MF \M∞F

Q/Z×
⊕
v∈M∞F

1
2Z/Z,

by Claim 20.10 and since Br(R) = Z/2Z. Define the invariant map ι : H2(G,A×E)→
Q/Z via ⊕

v∈MF /M∞F

Q/Z
(xv)v 7→

∑
v xv−−−−−−−−−→ Q/Z,

i.e., summing over all local factors (and ignoring all infinite ones).

Theorem 21.8 (Brauer Reciprocity). The composition

Br(F/E)→ H2(G,A×E)
ι−→ Q/Z

is zero for all E/Q.
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Note that E is essentially irrelevant here; this theorem is really about Br(F ).
The first map is induced by the diagonal embedding E ↪→ A×E , and the cohomo-
logical interpretation of the Brauer group then shows that every division algebra
over F is a matrix algebra except at finitely many places, which is otherwise not
an obvious statement.

Example 21.9. Any a, b ∈ Q× give a Hamiltonian algebra Ha,b over Q. At a
finite prime p, the invariant is{

0 if Ha,b ⊗Qp ' M2(Qp),
1/2 otherwise.

⇐⇒

{
0 if (a, b)p = 1,

1/2 if (a, b)p = −1.

Thus, asserting that the sum of all invariants is zero is again quadratic reciprocity.

Claim 21.10. Artin reciprocity is valid for Q(ζn)/Q, where ζn is a primitive
nth root of unity.

Proof. We proceed via explicit calculation using Dwork’s theorem. We may
assume that n = `r is a prime power, because Q(ζn) is the compositum of Q(ζ`r )
over all prime-power factors `r of n, and Gal(Q(ζn)/Q) then splits as a product
over Gal(Q(ζ`r )/Q). We then have a composition

Q× ↪→ A×Q
θ−→ Gal(Q(ζ`r )/Q) = (Z/`rZ)×,

where θ =
∏
p θp as before. We’d like to show that this map is trivial. To this end,

it suffices to show that θ(p) = 1 for all primes p and θ(−1) = 1. Suppose p 6= `; the
case p = ` will be covered in the next lecture. Then

θp(p) = p,

θ`(p) = p−1,

θq(p) = 1,

θ∞(p) = 1.

Indeed, recall that

θp : Q×p → Gal(Qp(ζ`r )/Qp)
p 7→ Frobp,

and θ(Z×p ) = 1. But Frobp corresponds to p ∈ (Z/`rZ)×. For the second case,
θ`(p) acts as p−1 ∈ (Z/`rZ)× by Dwork’s theorem, and for the third case, in which
q 6= p, `, we have p ∈ (Z/qZ)× and the extension Qq(ζ`r )/Qq is unramified. Finally,
θ∞ corresponds to taking sign, as it is a map R× → Gal(C/R) which contracts
the connected components of R×, giving a map from Z/2Z sending 1 to complex
conjugation. �
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