LECTURE 6

Exact Sequences and Tate Cohomology

Last time we began discussing some simple homological algebra; our motivation was to compute the order of certain finite abelian groups (in particular, $K^{\times}/N(L^{\times})$, where L/K is a cyclic extension of local fields). Recall the following definition:

DEFINITION 6.1. A sequence

$$\cdots \to X^{n-1} \xrightarrow{d^n} X^n \xrightarrow{d^{n+1}} X^{n+1} \to \cdots$$

is exact if for each n, we have $\operatorname{Ker}(d^{n+1}) = \operatorname{Im}(d^n)$, where we refer to the 'd'' as differentials.

To solve this equation, one typically shows that if d^{n+1} kills an element, then it is in the image of d^n . We saw that for a short exact sequence

$$0 \to M \hookrightarrow E \twoheadrightarrow N \to 0,$$

we have M = E/N and $\#E = \#M \cdot \#N$, so short exact sequences are an effective way of measuring the size of abelian groups. We also saw that for any such short exact sequence and $n \ge 1$, there is a long exact sequence

(6.1)
$$0 \to M[n] \to E[n] \to N[n] \xrightarrow{\delta} M/n \to E/n \to N/n \to 0,$$

where we recall that

$$M[n] := \{x \in M : nx = 0\} = \operatorname{Tor}_1(M, \mathbb{Z}/n) = H_1(M \otimes_L \mathbb{Z}/n),$$

which denote the torsion subgroup and first homology group, respectively, and similarly for E and N. The boundary map δ lifts an element $x \in N[n]$ to $\tilde{x} \in E$, so that $n\tilde{x} \in M$ since nx = 0 in N, and then maps $n\tilde{x}$ to its equivalence class in M/n. It remains to check the following claims:

CLAIM 6.2. The boundary map δ is well-defined.

PROOF. Suppose $\tilde{\tilde{x}}$ is another lift of x. Then $\tilde{x} - \tilde{\tilde{x}} \in M$ as its image in N is zero, hence $n(\tilde{x} - \tilde{\tilde{x}}) \in nM$, so $n\tilde{x} = n\tilde{\tilde{x}}$ in M/nM.

CLAIM 6.3. The sequence in (6.1) is exact.

PROOF. This is clear at all maps aside from the boundary map. If $\delta(x) = n\tilde{x} = 0$ in M/n for some $x \in N[n]$ with lift $\tilde{x} \in E$, then $\tilde{x} \in M$, and therefore x = 0 in N. Hence $x \in N[n]$ and so $\tilde{x} \in E[n]$ by exactness. Similarly, if $x \in M/n$ has image zero E/n, then $\tilde{x} = ny$ for some $y \in E$, where \tilde{x} is a lift of x to M. Projecting down to N, we see that $0 = n\bar{y}$ by exactness, and therefore $\bar{y} \in N[n]$. So $ny \in M$, again by exactness, and $\delta(\bar{y}) = ny = x$ as classes in M/n, as desired.

We have the following useful lemma:

LEMMA 6.4. Suppose

 $0 \to X^0 \xrightarrow{d^1} X^1 \xrightarrow{d^2} \cdots \xrightarrow{d^{n-1}} X^{n-1} \xrightarrow{d^n} X^n \to 0$

is exact, and all X^i are finite. Then

$$#X^0 \cdot #X^2 \dots = #X^1 \cdot #X^3 \dots$$

PROOF. We proceed by induction on n. The result is clear for n = 1, so suppose it holds for n - 1. Form the exact sequences

$$0 \to X^0 \to \dots \to X^{n-1} \xrightarrow{d^{n-1}} \operatorname{Im}(d^{n-1}) \to 0$$

and

$$0 \to \operatorname{Im}(d^{n-1}) \to X^{n-1} \xrightarrow{d^n} X^n \to 0.$$

Suppose n is even. Then

$$#X^{0} \cdot #X^{2} \cdots #X^{n} = #X^{0} \cdot #X^{2} \cdots #X^{n-1} \cdot \frac{#X^{n-1}}{\#\operatorname{Im}(d^{n-1})}$$
$$= #X^{1} \cdot #X^{3} \cdots \#\operatorname{Im}(d^{n-1}) \cdot \frac{X^{n-1}}{\#\operatorname{Im}(d^{n-1})}$$
$$= #X^{1} \cdot #X^{3} \cdots #X^{n-1},$$

by the inductive hypothesis. The proof for odd n is similar.

DEFINITION 6.5. Let M be an abelian group with M/n and M[n] finite. Then

$$\chi(M) := \chi_n(M) := \frac{\#(M/n)}{\#(M[n])}$$

is the Euler characteristic of M.

EXAMPLE 6.6. (1) If M is finite, then $\chi(M) = 1$. To see this, observe that

 $0 \to M[n] \to M \xrightarrow{n} M \to M/n \to 0$

is exact, and so by Lemma 6.4, $\#(M[n]) \cdot \#M = \#M \cdot \#(M/n)$.

(2) If $M = \mathbb{Z}$, then $\chi(M) = n$, since M[n] = 0 and $M/n = \mathbb{Z}/n$ has order n.

The following lemma is an important fact about Euler characteristics:

LEMMA 6.7. For a short exact sequence

$$0 \to M \to E \to N \to 0,$$

if χ exists for two of the three abelian groups, then it exists for the third, and $\chi(M) \cdot \chi(N) = \chi(E)$, where "exists" means that (say for M) M/n and M[n] are both finite.

PROOF. We have an exact sequence

$$0 \to M[n] \to E[n] \to N[n] \to M/n \to E/n \to N/n \to 0.$$

More generally, note that if $X^{n-1} \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1}$ is exact, then X^n is finite if X^{n-1} and X^{n+1} are, since there is a short exact sequence

$$0 \to \operatorname{Im}(d^{n-1}) = \operatorname{Ker}(d^n) \to X^n \to \operatorname{Im}(d^n) \to 0,$$

where the outer two groups are finite and therefore $\#X^n = \#\text{Ker}(d^n) \cdot \#\text{Im}(d^n)$ is too. Thus, all groups in the sequence are finite, and

$$#(M[n]) \cdot #(N[n]) \cdot #(E/n) = #(E[n]) \cdot #(M/n) \cdot #(N/n)$$

by Lemma 6.4, which yields the desired expression.

As an application, let us compute $\#(K^{\times}/(K^{\times})^n)$. Observe that

$$\chi(K^{\times}) = \frac{\#(K^{\times}/(K^{\times})^n)}{\#(K^{\times}[n])},$$

where the denominator is the number of nth roots of unity in K. Moreover, we have an exact sequence

$$0 \to \mathcal{O}_K^{\times} \to K^{\times} \xrightarrow{v} \mathbb{Z} \to 0,$$

and so by Lemma 6.7, $\chi(K^{\times}) = \chi(\mathcal{O}_{K}^{\times})\chi(\mathbb{Z}) = n\chi(\mathcal{O}_{K}^{\times})$. Thus, we'd really like to compute $\chi(\mathcal{O}_{K}^{\times})$.

A good heuristic to use is that if \mathcal{O}_K^{\times} contains some open, that is, finite index, subgroup Γ , then $\Gamma \simeq \mathcal{O}_K^+$, which is true if $\operatorname{char}(K) = 0$ by *p*-adic exponentials. It then follows that

(6.2)
$$\chi(\mathcal{O}_K^{\times}) = \chi(\Gamma)\chi(\mathcal{O}_K^{\times}/\Gamma) = \chi(\Gamma) = \chi(\mathcal{O}_K)$$

under addition, since $\mathcal{O}_K^{\times}/\Gamma$ is finite by assumption. Then $\mathcal{O}_K[n] = 0$ additively (since \mathcal{O}_K is an integral domain), and $\chi(\mathcal{O}_K) = \#(\mathcal{O}_K/n) = |n|_K^{-1}$, where $|x|_K := q^{-v(x)}$ denotes the normalized (i.e., $v(\pi) = 1$ for a uniformizer π) absolute value inside K, and q denotes the order of the residue field. The resulting formula

(6.3)
$$\#(K^{\times}/(K^{\times})^{n}) = \frac{n \cdot \#(K^{\times}[n])}{|n|_{K}}$$

recovers that already proven in Problem 1(b) of Problem Set 1 for n = 2 (though the same methods would also work for general n). The proof without exponentials uses the fact that, for large enough N,

$$1 + \mathfrak{p}^N \xrightarrow{x \mapsto x^n} 1 + \mathfrak{p}^{N+v(n)}$$

is an isomorphism (which can be shown using filtrations; this is the multiplicative version of the additive statement we had earlier).

We now introduce the notion of Tate cohomology for cyclic groups.

DEFINITION 6.8. If G is a (not necessarily finite) group, then a G-module A is an abelian group, with G acting on A by group automorphism. Equivalently, there is a homomorphism $G \to \operatorname{Aut}(A)$, where the action of G satisfies

(1)
$$g \cdot (a+b) = g \cdot a + g \cdot b$$

(2)
$$(gh) \cdot a = g \cdot (h \cdot a),$$

for all $g, h \in G$ and $a, b \in A$.

EXAMPLE 6.9. If L/K is an extension of fields with G := Gal(L/K), then L and L^{\times} are G-modules, since field automorphisms preserve both operations. This will be the main example concerning us.

Now, assume G is finite, and let A be a G-module.

DEFINITION 6.10. The first Tate cohomology group is

$$\dot{H}^0(G,A) := A^G / \mathcal{N}(A),$$

where

$$A^G := \{ a \in A : g \cdot a = a \text{ for all } g \in G \}$$

denotes the set of fixed points.

Note that the norm map is defined as

$$\mathbf{N}\colon A\to A, \quad a\mapsto \sum_{g\in G}g\cdot a,$$

so we really do need the assumption that G be finite. Moreover, this expression shows that the norm map factors through $A^G \subseteq A$.

- EXAMPLE 6.11. (1) Returning to Example 6.9 with A = L, we have $A^G = K$, and N: $L \to K$ is the field trace, hence $\hat{H}^0(L/K) = K/T(L) = 0$, since L/K must be separable.
- (2) If $A = L^{\times}$, then $(L^{\times})^G = K^{\times}$, and $\hat{H}^0(L^{\times}) = K^{\times}/N(L^{\times})$. Thus, our earlier problem is now rephrased as computing $\hat{H}^0(G, L^{\times})$ for L/K a cyclic extension of local fields.
- (3) If A is any abelian group, then we say that G acts on A trivially if $g \cdot a = a$ for all $g \in G$ and $a \in A$. Then $\hat{H}^0(G, A) = A/\#G$. Thus, the notion of Tate cohomology entirely generalizes our previous discussion.

DEFINITION 6.12. A map (or *G*-morphism, or any other reasonable nomenclature) of *G*-modules $A \xrightarrow{f} B$ is a group homomorphism preserving the action of *G*, that is, $f(g \cdot a) = g \cdot f(a)$ for all $g \in G$ and $a \in A$.

A (short) exact sequence of G-modules is a (short) exact sequence of abelian groups, but where all maps are G-morphisms.

EXAMPLE 6.13. $1 \to \mathcal{O}_L^{\times} \to L^{\times} \xrightarrow{v} \mathbb{Z} \to 1$ is a short exact sequence of *G*-modules, where $G := \operatorname{Gal}(L/K)$ and *G* acts trivially on \mathbb{Z} and on \mathcal{O}_L^{\times} via the Galois action.

Now, let

$$0 \to A \to B \to C \to 0$$

by a short exact sequence of G-modules. Then we obtain an exact sequence

(6.4)
$$\hat{H}^0(G,A) \xrightarrow{\alpha} \hat{H}^0(G,B) \xrightarrow{\beta} \hat{H}^0(G,C),$$

where α is not necessarily injective (as we saw when the group action was trivial in the previous lecture), and β is not necessarily surjective. This is because Tate cohomology involves two operations: one, taking fixed points, is left-exact, but not right-exact, and the other, taking a quotient, is right-exact but not left-exact.

Now, assume $G = \mathbb{Z}/n\mathbb{Z}$, and let $\sigma \in G$ be a generator (i.e. 1).

DEFINITION 6.14. The second Tate cohomology group is

$$\hat{H}^1(G, A) := \operatorname{Ker}(\mathbb{N} \colon A \to A)/(1 - \sigma)A.$$

Note that the reason we take the quotient is because, for any $x := y - \sigma y$ for $y \in A$, we get

$$N(x) = x + \sigma x + \dots + \sigma^{n-1}x = y - \sigma y + \sigma y - \sigma^2 y + \dots + \sigma^{n-1}y - \underbrace{\sigma^n y}_y = 0,$$

and we'd like to omit these trivial cases for the kernel.

Now, we claim that for an exact sequence

$$0 \to A \to B \to C \to 0,$$

there is an exact sequence

(6.5)
$$\hat{H}^0(A) \to \hat{H}^0(B) \to \hat{H}^0(C) \xrightarrow{\delta} \hat{H}^1(A) \to \hat{H}^1(B) \to \hat{H}^1(C)$$

via the boundary map δ , which lifts any $x \in C^G/\mathcal{N}(C)$ to $\tilde{x} \in B$, and then takes $(1-\sigma)\tilde{x}$. Since $x \in C^G$, we have $(1-\sigma)x = 0$ in C, and therefore $(1-\sigma)\tilde{x} \in A$. Moreover, $(1-\sigma)\tilde{x}$ is clearly killed by the norm in A, hence it gives a class in $\hat{H}^1(G, A)$. Again, we check the following:

CLAIM 6.15. The boundary map δ is well-defined, i.e., it doesn't depend on the choice of \tilde{x} .

PROOF. If $\tilde{\tilde{x}}$ is another lift, then $\tilde{x} - \tilde{\tilde{x}} \in A$ since $C \simeq B/A$, so $(1 - \sigma)(\tilde{x} - \tilde{\tilde{x}})$ is zero in $\hat{H}^1(G, A)$.

CLAIM 6.16. The sequence (6.5) extends to be exact.

PROOF. As before, we verify this only at the boundary map. Letting $x \in B^G/\mathcal{N}(B)$, its image in $\hat{H}^1(A)$ is $(1 - \sigma)x = 0$. If $x \in \operatorname{Ker}(\delta)$, then $\tilde{x} \in B^G$ and hence in $\hat{H}^0(B)$ for some lift \tilde{x} of x.

Letting $x \in C^G/\mathcal{N}(C)$, its image in $\hat{H}^1(A)$ is $(1 - \sigma)\tilde{x}$, where \tilde{x} is a lift of x to B, hence it is killed in $\hat{H}^1(B)$ by definition. If $x \in \hat{H}^1(A)$ is 0 in $\hat{H}^1(B)$, then $x \in (1 - \sigma)B$, hence $x \in \operatorname{Im}(\delta)$.

28

MIT OpenCourseWare https://ocw.mit.edu

18.786 Number Theory II: Class Field Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.