
LECTURE 6

Exact Sequences and Tate Cohomology

Last time we began discussing some simple homological algebra; our motivation
was to compute the order of certain finite abelian groups (in particular, K×/N(L×),
where L/K is a cyclic extension of local fields). Recall the following definition:

Definition 6.1. A sequence

· · · → Xn−1 dn−→ Xn dn+1

−−−→ Xn+1 → · · ·

is exact if for each n, we have Ker(dn+1) = Im(dn), where we refer to the ‘di’ as
differentials.

To solve this equation, one typically shows that if dn+1 kills an element, then
it is in the image of dn. We saw that for a short exact sequence

0→M ↪→ E � N → 0,

we have M = E/N and #E = #M ·#N , so short exact sequences are an effective
way of measuring the size of abelian groups. We also saw that for any such short
exact sequence and n ≥ 1, there is a long exact sequence

(6.1) 0→M [n]→ E[n]→ N [n]
δ−→M/n→ E/n→ N/n→ 0,

where we recall that

M [n] := {x ∈M : nx = 0} = Tor1(M,Z/n) = H1(M ⊗L Z/n),

which denote the torsion subgroup and first homology group, respectively, and
similarly for E and N . The boundary map δ lifts an element x ∈ N [n] to x̃ ∈ E,
so that nx̃ ∈ M since nx = 0 in N , and then maps nx̃ to its equivalence class in
M/n. It remains to check the following claims:

Claim 6.2. The boundary map δ is well-defined.

Proof. Suppose ˜̃x is another lift of x. Then x̃ − ˜̃x ∈ M as its image in N is
zero, hence n(x̃− ˜̃x) ∈ nM , so nx̃ = n˜̃x in M/nM . �

Claim 6.3. The sequence in (6.1) is exact.

Proof. This is clear at all maps aside from the boundary map. If δ(x) = nx̃ =
0 in M/n for some x ∈ N [n] with lift x̃ ∈ E, then x̃ ∈ M , and therefore x = 0 in
N . Hence x ∈ N [n] and so x̃ ∈ E[n] by exactness. Similarly, if x ∈M/n has image
zero E/n, then x̃ = ny for some y ∈ E, where x̃ is a lift of x to M . Projecting
down to N , we see that 0 = nȳ by exactness, and therefore ȳ ∈ N [n]. So ny ∈M ,
again by exactness, and δ(ȳ) = ny = x as classes in M/n, as desired. �

We have the following useful lemma:
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Lemma 6.4. Suppose

0→ X0 d1−→ X1 d2−→ · · · d
n−1

−−−→ Xn−1 dn−→ Xn → 0

is exact, and all Xi are finite. Then

#X0 ·#X2 · · · = #X1 ·#X3 · · · .

Proof. We proceed by induction on n. The result is clear for n = 1, so suppose
it holds for n− 1. Form the exact sequences

0→ X0 → · · · → Xn−1 dn−1

−−−→ Im(dn−1)→ 0

and
0→ Im(dn−1)→ Xn−1 dn−→ Xn → 0.

Suppose n is even. Then

#X0 ·#X2 · · ·#Xn = #X0 ·#X2 · · ·#Xn−1 · #Xn−1

# Im(dn−1)

= #X1 ·#X3 · · ·# Im(dn−1) · Xn−1

# Im(dn−1)

= #X1 ·#X3 · · ·#Xn−1,

by the inductive hypothesis. The proof for odd n is similar. �

Definition 6.5. Let M be an abelian group with M/n and M [n] finite. Then

χ(M) := χn(M) :=
#(M/n)

#(M [n])

is the Euler characteristic of M .

Example 6.6. (1) If M is finite, then χ(M) = 1. To see this, observe
that

0→M [n]→M
n−→M →M/n→ 0

is exact, and so by Lemma 6.4, #(M [n]) ·#M = #M ·#(M/n).
(2) If M = Z, then χ(M) = n, since M [n] = 0 and M/n = Z/n has order n.

The following lemma is an important fact about Euler characteristics:

Lemma 6.7. For a short exact sequence

0→M → E → N → 0,

if χ exists for two of the three abelian groups, then it exists for the third, and
χ(M) · χ(N) = χ(E), where “exists” means that (say for M) M/n and M [n] are
both finite.

Proof. We have an exact sequence

0→M [n]→ E[n]→ N [n]→M/n→ E/n→ N/n→ 0.

More generally, note that if Xn−1 dn−1

−−−→ Xn dn−→ Xn+1 is exact, then Xn is finite if
Xn−1 and Xn+1 are, since there is a short exact sequence

0→ Im(dn−1) = Ker(dn)→ Xn → Im(dn)→ 0,
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where the outer two groups are finite and therefore #Xn = #Ker(dn) ·# Im(dn) is
too. Thus, all groups in the sequence are finite, and

#(M [n]) ·#(N [n]) ·#(E/n) = #(E[n]) ·#(M/n) ·#(N/n)

by Lemma 6.4, which yields the desired expression. �

As an application, let us compute #(K×/(K×)n). Observe that

χ(K×) =
#(K×/(K×)n)

#(K×[n])
,

where the denominator is the number of nth roots of unity in K. Moreover, we
have an exact sequence

0→ O×K → K×
v−→ Z→ 0,

and so by Lemma 6.7, χ(K×) = χ(O×K)χ(Z) = nχ(O×K). Thus, we’d really like to
compute χ(O×K).

A good heuristic to use is that if O×K contains some open, that is, finite index,
subgroup Γ, then Γ ' O+

K , which is true if char(K) = 0 by p-adic exponentials. It
then follows that

(6.2) χ(O×K) = χ(Γ)χ(O×K/Γ) = χ(Γ) = χ(OK)

under addition, since O×K/Γ is finite by assumption. Then OK [n] = 0 additively
(since OK is an integral domain), and χ(OK) = #(OK/n) = |n|−1

K , where |x|K :=

q−v(x) denotes the normalized (i.e., v(π) = 1 for a uniformizer π) absolute value
inside K, and q denotes the order of the residue field. The resulting formula

(6.3) #(K×/(K×)n) =
n ·#(K×[n])

|n|K
recovers that already proven in Problem 1(b) of Problem Set 1 for n = 2 (though
the same methods would also work for general n). The proof without exponentials
uses the fact that, for large enough N ,

1 + pN
x 7→xn−−−−→ 1 + pN+v(n)

is an isomorphism (which can be shown using filtrations; this is the multiplicative
version of the additive statement we had earlier).

We now introduce the notion of Tate cohomology for cyclic groups.

Definition 6.8. If G is a (not necessarily finite) group, then a G-module A is
an abelian group, with G acting on A by group automorphism. Equivalently, there
is a homomorphism G→ Aut(A), where the action of G satisfies

(1) g · (a+ b) = g · a+ g · b,
(2) (gh) · a = g · (h · a),

for all g, h ∈ G and a, b ∈ A.

Example 6.9. If L/K is an extension of fields with G := Gal(L/K), then L
and L× are G-modules, since field automorphisms preserve both operations. This
will be the main example concerning us.

Now, assume G is finite, and let A be a G-module.
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Definition 6.10. The first Tate cohomology group is

Ĥ0(G,A) := AG/N(A),

where
AG := {a ∈ A : g · a = a for all g ∈ G}

denotes the set of fixed points.

Note that the norm map is defined as

N: A→ A, a 7→
∑
g∈G

g · a,

so we really do need the assumption that G be finite. Moreover, this expression
shows that the norm map factors through AG ⊆ A.

Example 6.11. (1) Returning to Example 6.9 with A = L, we have AG =

K, and N: L→ K is the field trace, hence Ĥ0(L/K) = K/T(L) = 0, since
L/K must be separable.

(2) If A = L×, then (L×)G = K×, and Ĥ0(L×) = K×/N(L×). Thus, our
earlier problem is now rephrased as computing Ĥ0(G,L×) for L/K a cyclic
extension of local fields.

(3) If A is any abelian group, then we say that G acts on A trivially if g ·a = a

for all g ∈ G and a ∈ A. Then Ĥ0(G,A) = A/#G. Thus, the notion of
Tate cohomology entirely generalizes our previous discussion.

Definition 6.12. A map (or G-morphism, or any other reasonable nomencla-
ture) of G-modules A f−→ B is a group homomorphism preserving the action of G,
that is, f(g · a) = g · f(a) for all g ∈ G and a ∈ A.

A (short) exact sequence of G-modules is a (short) exact sequence of abelian
groups, but where all maps are G-morphisms.

Example 6.13. 1 → O×L → L×
v−→ Z → 1 is a short exact sequence of G-

modules, where G := Gal(L/K) and G acts trivially on Z and on O×L via the
Galois action.

Now, let
0→ A→ B → C → 0

by a short exact sequence of G-modules. Then we obtain an exact sequence

(6.4) Ĥ0(G,A)
α−→ Ĥ0(G,B)

β−→ Ĥ0(G,C),

where α is not necessarily injective (as we saw when the group action was trivial
in the previous lecture), and β is not necessarily surjective. This is because Tate
cohomology involves two operations: one, taking fixed points, is left-exact, but not
right-exact, and the other, taking a quotient, is right-exact but not left-exact.

Now, assume G = Z/nZ, and let σ ∈ G be a generator (i.e. 1).

Definition 6.14. The second Tate cohomology group is

Ĥ1(G,A) := Ker(N: A→ A)/(1− σ)A.
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Note that the reason we take the quotient is because, for any x := y − σy for
y ∈ A, we get

N(x) = x+ σx+ · · ·+ σn−1x = y − σy + σy − σ2y + · · ·+ σn−1y − σny︸︷︷︸
y

= 0,

and we’d like to omit these trivial cases for the kernel.
Now, we claim that for an exact sequence

0→ A→ B → C → 0,

there is an exact sequence

(6.5) Ĥ0(A)→ Ĥ0(B)→ Ĥ0(C)
δ−→ Ĥ1(A)→ Ĥ1(B)→ Ĥ1(C)

via the boundary map δ, which lifts any x ∈ CG/N(C) to x̃ ∈ B, and then takes
(1 − σ)x̃. Since x ∈ CG, we have (1 − σ)x = 0 in C, and therefore (1 − σ)x̃ ∈ A.
Moreover, (1 − σ)x̃ is clearly killed by the norm in A, hence it gives a class in
Ĥ1(G,A). Again, we check the following:

Claim 6.15. The boundary map δ is well-defined, i.e., it doesn’t depend on the
choice of x̃.

Proof. If ˜̃x is another lift, then x̃− ˜̃x ∈ A since C ' B/A, so (1− σ)(x̃− ˜̃x)

is zero in Ĥ1(G,A). �

Claim 6.16. The sequence (6.5) extends to be exact.

Proof. As before, we verify this only at the boundary map. Letting x ∈
BG/N(B), its image in Ĥ1(A) is (1 − σ)x = 0. If x ∈ Ker(δ), then x̃ ∈ BG and
hence in Ĥ0(B) for some lift x̃ of x.

Letting x ∈ CG/N(C), its image in Ĥ1(A) is (1 − σ)x̃, where x̃ is a lift of x
to B, hence it is killed in Ĥ1(B) by definition. If x ∈ Ĥ1(A) is 0 in Ĥ1(B), then
x ∈ (1− σ)B, hence x ∈ Im(δ). �
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