
THE DYNAMICS OF SUCCESSIVE DIFFERENCES
 
OVER Z AND R
 

YIDA GAO, MATT REDMOND, ZACH STEWARD 

Abstract. The n-value game is a dynamical system defined by a 
method of iterated differences. In this paper, we examine the be
havior of several variants of the n-value game, and prove a few key 
results: the 4-value game over the positive integers is guaranteed 
to converge to a fixed point; the 3-value game over the positive 
integers is guaranteed to exhibit cyclic behavior; for all n, there 
exist infinitely many non-cycling n-value games over the positive 
reals with infinite length. 

1. Introduction 

The n-value game is a system based on a simple transition rule – we 
describe the n = 4 case as an example, with other polygons generalizing 
naturally. Begin with a square and label its vertices with numbers 
(a, b, c, d) chosen from a set equipped with a norm – in this paper, 
we examine the sets Z+ (positive integers) and R+ (positive reals) 
with the standard absolute value norm. To apply a single step of 
the transition, for each edge of the square, write the absolute value 
of the difference between the two endpoints on the midpoint of the 
edge. Finally, connect these midpoints to form a new square. 

Figure 1. A visualization of the 4-game transition. 
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Specifically, for n = 4, the operator 

T ≡ (a, b, c, d) → (|b − a|, |c − b|, |d − c|, |a − d|) 
represents this transformation. During an n-value game, we define 
each individual ordered list of vertex labels as a state, and the ordered 
sequence of states forms the game. The state sm obtained by m ap
plications of transition rule T to a starting state s0 will be notated by 

= T msm s0. 

Definition 1.1 (k-cyclic games). A game starting from state s0 is k
= T m+kcyclic iff ∃ integers m, k > 0 such that T ms0 s0. 

Note that a game can be 1-cyclic; this corresponds to convergence 
towards a fixed point. 

Definition 1.2 (Length of a game). For 1-cyclic games starting at 
state s0, the length of the game is the least integer m such that T ms0 = 
T m+1s0. 

Definition 1.3 (Non-repeating games). A game starting from state s0 

= T m+1is non-repeating iff T ms0  s0 for all integers m ≥ 0. 

In this paper, we prove key properties of n-value games over differ
ent sets. Section 2, authored by Matt Redmond, examines the notion 
of “equivalence” between states, and demonstrates that games over 
the rational numbers can be reduced to equivalent games over the in
tegers. Section 3, authored by Yida Gao, discusses the behavior of 
all 3-value games over Z+ , concluding that each 3-value game ends 
with 3-cyclic behavior. Section 4, authored by Matt Redmond and 
Zach Steward, proves that each 4-value game on Z+ ends with 1-cyclic 
behavior, converging to the fixed point (0, 0, 0, 0). This section also 
discusses empirical results and probability distributions on lengths for 
the 4-value game on Z+ with entries taken from [0, v − 1] for various 
v. Section 5, authored by Matt Redmond, demonstrates the existence 
of non-repeating 4-value games over the reals. Furthmore, this section 
demonstrates the existence of infinitely many non-repeating games by 
utilizing the notion of equivalence developed in Section 2. 

2. An equivalence relation on states 

It will be helpful to have a conception about state equivalence: 
namely, what should we mean by equivalent? We would like games 
that begin with any two “equivalent” states to have identical long-
term behavior (either k-cyclic or non-repeating), with the same length 
if k = 1. 
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2.1. Symmetries. We begin by noting that the state (a, b, c, d) is 
clearly equivalent to the state (b, c, d, a) - all of the vertex labels have 
been rotated one place to the left. Similarly, the state (a, b, c, d) is also 
equivalent to the state (b, a, d, c) – the vertex labels have been reflected 
across a vertical line. The diagram below captures all of the symme
tries of the square. These symmetries form the group D8 – the dihedral 
symmetry group of the square. 

Definition 2.1 (Equivalent by symmetry). For an n-value game, two 
states X and Y are equivalent if there exists an element σ ∈ D2n such 
that σ(X) = Y . 

These symmetries σ preserve vertex adjacency, so they will preserve 
our transformation rule, which depends only on adjacent vertices. 

Figure 2. Elements of D8, the symmetry group of the 
square, with rotations on top and reflections on bottom. 

2.2. Scalar multiplication. States that are a constant multiple of 
each other have identical long-term behavior - this can also be used to 
help us define equivalence. 

Lemma 2.2. If r ∈ R+, the game starting with (ra1, ra2, . . . ran) has 
the same behavior as the game starting with (a1, a2, . . . , an). 

Proof. Let p = (ra1, ra2, . . . , ran), and q = (a1, a2, . . . , an). By the 
linearity of subtraction (and the fact that r > 0 by hypothesis), we 
have Tp = (|ra2 − ra1|, |ra3 − ra2|, . . . , |ra1 − ran|) = (r|a2 − a1|, r|a3 − 
a2|, . . . , r|a1 − an|) = r · Tq. The steps taken by the game starting with 
q are therefore exactly the same steps taken by the game starting with 
p, with an extra multiplier of r pulled out in one step, which will not 
alter the long term behavior. D 

Definition 2.3 (Equivalent by scaling). Two states X and Y are 
equivalent if ∃r ∈ R+ such that r · X = Y . 
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2.3. Constant offset. States that differ by a constant offset will clearly 
have long term behavior that is identical, because the offset is absorbed 
after one transition. 

Lemma 2.4. If k ∈ R, the game starting with (a1, a2, . . . , an) has the 
same behavior as the game starting with (a1 + k, a2 + k, . . . , an + k). 

Proof. Consider a = (a1 +k, a2 +k, . . . an +k) = a+k for some constant 
vector k. Ta = (|((a2 + k) − (a1 + k))|, |((a3 + k) − (a2 + k))|, . . . |((an + 
k) − (a1 + k))|) = (|a2 − a1|, |a3 − a2|, . . . , |an − a1|) = Ta. Applying T 
on some starting vector plus an offset yields the same result as applying 
the transform to the starting vector: T (a + k) = Ta. D 

Definition 2.5 (Equivalent by offset). Two states X and Y are equiv
alent if ∃k ∈ R such that X + (k, k, . . . , k) = Y . 

2.4. Equivalence. Putting together the previous notions of equiva
lence, we arrive at a combined definition for our equivalence relation: 

Definition 2.6 (Equivalence of states). For an n-value game, two 
states X and Y are equivalent if ∃r, k ∈ R with r > 0, and an ele
ment σ of D2n such that r · σ(X) + (k, k, . . . , k) = Y . 

This notion of equivalence under scaling, offset, and symmetry will 
prove useful for later discussion. 

2.5. Games over Q and Z. It is tempting to consider the behavior 
of n-value games over the rationals intead of the integers; however, this 
is a fruitless endeavour. 

Corollary 2.7 (States over Q reduce to states over Z). States with all 
entries in Q are equivalent to a state with all entries in Z. 

Proof.	 Suppose we have a state s whose entries are rational numbers: 
(a1 ans = , . . . , ). We can rewrite s with a common denominator D = b1 bn 

bi:  	  
a1b2b3 · · · bn a2b1b3 · · · bn anb1b2 · · · bn−1 

s = , , . . . ,	 . 
D D	 D

From 2.2, we can pull out the constant scalar 
D 
1 and show that this 

is equivalent to the state 

(a1b2b3 · · · bn, a2b1b3 · · · bn, . . . anb1b2 · · · bn−1) 

which has all integer entries. This demonstrates that all states over the 
rationals can be reduced to an equivalent state over the integers. D 
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3. Behavior of all 3-value games over Z+ 

In this section, we consider the behavior of the 3-value game over 
Z+ . We prove that all 3-value games with a non-trivial initial state 
cycle, rather than converging to (0,0,0). 

First, let us imagine the values in the tuple as points on a number 
line. For example, a starting triangle with (1,3,5) looks like this on the 
number line: 

Figure 3. A number line with points corresponding to 
(1,3,5) game state. 

Definition 3.1. Let range(s) be defined as the largest positive differ
ence between any two points in a given state s. 

range(s) = max (si) − min(si) 
si∈s si∈s 

Definition 3.2. A trivial 3-value game is one in which the start 
state is (x, x, x), where x ∈ Z+ . 

Thus, a trivial 3-value game with start state s0 applied with transi
tion operator T leads to Ts0 = (0, 0, 0) on the first step. 

Definition 3.3. A non-trivial 3-value game is one in which Ts0 = 
(0, 0, 0) where T is the transition operator and s0 is the start state of 
the game with values ∈ Z+ . 

Theorem 3.4. All non-trivial 3-value games over Z+ enter a 3-cycle 
of the form (0, x, x). 

Proof. The proof is by cases. Because adjacency of the vertices will be 
preserved for any σ ∈ D6 we only need to consider five possible cases 
for the non-trivial 3-value game over Z. The cases are states of 3-value 
games prior to a transition. The first three cases immediately lead to 
a 3 step cycle while the last two cases lead to decreases in range. 
(1) One zero and two numbers of the same value (0, x, x): 

This case enters a 3-cycle that returns a permutation of (0, x, x) 
on every step. 

(0, x, x) → (|0 − x|, |x − x|, |x − 0|) = (x, 0, x) 
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(x, 0, x) → (|x − 0|, |0 − x|, |x − x|) = (x, x, 0) 

(x, x, 0) → (|x − x|, |x − 0|, |0 − x|) = (0, x, x) 

(2) Two zeros and one non-zero number (0, 0, x): 
Range stays the same and the game enters case 1. 

(0, 0, x) → (0 − 0, |0 − x|, |x − 0) = (0, x, x) 

Range of (0, 0, x) = x; range of (0, x, x) = x 
(3) Three non-zero values in which two values are the same (x, y, y): 

Range stays the same and the game transitions to case 1. 

(x, y, y) → (|x − y|, 0, |y − x|) 

Range of (x, y, y) = |x − y|; range of (|x − y|, 0, |y − x|) = |x − y|
(4) Three distinct non-zero values (x, y, z): 

Since with the 3-value game we are essentially dealing with three 
numbers on a number line, any permutation of a state we want can 
be produced with a simple rotation of the values. Thus, without 
loss of generality, let z > y > x. In this case, the range decreases 
by y − x or z − y, and the new range is z − y or y − x. 

(x, y, z) → (|x − y|, |y − z|, |z − x|) = (y − x, z − y, z − x) 

If z − y > y − x, new range = z − x − (y − x) = z − y, otherwise 
new range = z − x − (z − y) = y − x. The difference in range is 
either z − x − (z − y) = y − x or z − x − (y − x) = z − y. 

Since the three distinct values case always implies reduction of 
range, the game will always reach a state with a repeated entry, 
which will then step into the cycling case 1. 

(5) One zero and two numbers of different values (0, x, y): 
In this case, the range decreases by y − min{y − x, x}. Without 

loss of generality, assume 0 < x < y: 

(0, x, y) → (|0 − x|, |x − y|, |y − 0|) = (x, y − x, y) 

Range of (0, x, y) = |y − 0| = y; range of (x, |x − y|, y) = y − (y − 
x) = x or y−x. Thus the range decreases by y−x or y−(y−x) = x. 

For all non-trivial 3-value games, the range is guaranteed to either 1. 
stay the same, in which case the game transitions to cycling case 1 or 
2. decrease at each step so the game will eventually transition into a 
(x, y, y) (case 4) or (0, 0, x) (case 3) state, which both lead to the case 
1 state. Thus, all non-trivial 3-value games over Z will reduce to case 
1 and cycle. D 
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4. 4-value games over Z+ 

4.1. The convergence of the 4-value game. The next logical ques
tion to ask after establishing that all 3-value games on the integers fall 
into 3-cyclic behavior is whether all n-value games on the integers fall 
into cyclic behavior. We next consider the case of the 4-value game on 
the integers. Surprisingly, we will show that all 4-value games on the 
integers end in the same fixed point! 

In this section, we establish that all 4-value games over Z+ converge 
to the state (0, 0, 0, 0). We accomplish this by demonstrating that 
each state eventually transitions to a state in which all of its entries 
are even, then we use 2.2 to pull out a factor of 2, preserving the 
length of the game through the properties of the equivalence relation. 
Removing this factor of 2 guarantees that we will produce a state with 
a smaller maximal element than some previous state, and repeating 
this argument inductively guarantees that we reach (0, 0, 0, 0). This 
procedure naturally gives a bound on the maximum length of a game, 
given its starting state. 

Lemma 4.1. For any given state g, the state g4 has all even entries. 

Proof. Proof procedes by case analysis over various parities. Let e 
represent an even element; let o represent an odd element. It is handy 
to recall rules for subtraction: e − e = e, e − o = o, o − e = o, o − o = e. 
There are six potential configurations (up to symmetry over D8) for 

the parities of the starting state. 

g = (e, e, e, e) g = (e, e, e, o) 
g = (e, e, o, o) g = (e, o, e, o) 
g = (o, o, o, e) g = (o, o, o, o) 

The following diagram indicates the progression of parities after 
transformations: 

Figure 4. A flowchart depicting the progression of parities 

It is clear that each state becomes (e, e, e, e) after at most four steps. 
D 

Theorem 4.2. All 4-value games over Z+ converge to (0, 0, 0, 0) 
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Proof. From any starting state g = (a1, a2, a3, a4) with all entries in 
Z+, take several steps until the game reaches a state where all entries 
are even. This will take at most four steps, by 4.1. The new state 
even even g can be written as (2b1, 2b2, 2b3, 2b4). By 2.2, the length of g is 

exactly the same as the length of the game starting on (b1, b2, b3, b4). 
However, we are guaranteed that the maximum element in (b1, b2, b3, b4) 
has decreased from the maximum element in (a1, a2, a3, a4) by at least 
a factor of 2. 

Proceed inductively, by stepping each new game until all entries 
are even (at most four steps each time), then factor out another 2. 
As the maximum element is constantly decreasing, each game must 
terminate at (0, 0, 0, 0) in a finite number of steps. Note that this last 
claim requires the well-ordering property: there is a least non-negative 
integer (namely, zero) that we terminate at. As we will see in Section 
5, the real numbers do not have this property, and we cannot bound 
the game length in the same way. D 

Theorem 4.3. Let L be the length of a game starting on (a, b, c, d). 
Then L < 4ilog2(max(a, b, c, d))l 

Proof. Each iteration of our induction requires at most four steps to 
reach a state with all even entries, and then it removes a factor of two 
from the state. We can divide by two at most ilog2(max(a, b, c, d))l 
times from the state (a, b, c, d) before terminating; therefore, the length 
is at most four times as large as the number of times we can pull out 
a factor of two. D 

4.2. The distribution of game lengths for the 4-value game on 
subsets of the integers. After demonstrating that all 4-value games 
over Z+ end at a fixed point, it is clear that a program which computes 
the length of various 4-games over Z+ will definitely halt for all inputs. 
We wrote such a program that takes a parameter v and examines all 
possible games with integer entries between 0 and v − 1, and used it to 
make a few empirical observations about the probability distribution 
on game length. In this section, we will examine this probability distri
bution in order to gain a better understanding of the dynamics of the 
4-game over Z+ . In addition to computing statistics about measures 
of central tendency, we also examine extremal statistics: what is the 
maximum length for games with entries in [0, v −1] for some parameter 
v? How does this observed maximum length compare with the bound 
on length given in 4.3? 
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4.2.1. Probability densities. Figure 5 plots the probability distribution 
on game length for v = 64, 128, 256 to demonstrate the very close 
match these distributions have for increasing values of v. It seems to 
be the case that the generally bimodal shape of this distribution does 
not depend on the value of the v parameter, although the maximum 
value clearly does. 

Figure 5. Probability Distribution of Length for v = {64, 128, 256} 

As can be seen in Figure 6, a large number of games converge to the 
final state (0, 0, 0, 0) after just 4 steps - cumulatively, more than 50% 
of these games terminate in 4 or fewer steps, and 91% terminate in 6 or 
fewer steps. We conjecture this is due to the fact that many games will 
fall into a particular equivalence class (see Section 2) that has game 
length 4. 
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Figure 6. Cumulative Distribution of Length for v = 256 

4.2.2. Theoretical bound for specified length. In 4.3 we prove that the 
length L of a game (a, b, c, d) can be at most 4ilog2(max(a, b, c, d))l, 
but we would like to investigate just how tight of a bound this really 
is. First note that for v = 128 we have at best max(a, b, c, d) = 127 
and therefore have a length L at most 4 · log2 127 = 28, but we are 
observing a maximum length of only 15. Similarly, for v = 64 we 
observe a maximum length of 13 compared to a theoretical max of 24. 
Furthermore when we increase n to 256, we observe a maximum length 
of 16 compared to the theoretical max of 32. The reasons for this are 
unclear - we conjecture that this surprising result is due to the fact 
that, on average, the parity will appear as (e, o, e, o) or (e, e, o, o), 
which only take 2 or 3 steps to reach (e, e, e, e) respectively instead 
of the worst-case 4 steps from the bound. In summary, the bound is 
quite loose. 
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5. n-value games over R 

In this section, we consider the properties of the n-valued game over 
the real numbers. Several questions come to mind: do all real-valued 
games terminate at a fixed point? If not, does there exist a real-valued 
game that demonstrates cyclic behavior? If not, does there exist a 
non-repeating real-valued game of infinite length? While we cannot 
yet answer the second question, we answer the first question (no) and 
third question (yes) by proving the existence of infinitely many games 
with infinite length. We accomplish this by representing a single step of 
the game as a linear operator (with a restricted domain), then demon
strating the existence of an infinite game for each value of n. Finally, 
we show that every infinite length game can be modified to generate 
infinitely many games of infinite length by using our equivalence rela
tion. 

Theorem 5.1 (Existence of non-repeating n-value game). For every 
n ≥ 3, there exists a λn such that 

⎤⎡ T ⎢⎢⎢⎢⎢⎢⎣
 

(1 − λn)
 
(1 − λn)(1 + λn)
 
(1 − λn)(1 + λn)

2
 

. . . 
)n−2(1 − λn)(1 + λn

1 

⎥⎥⎥⎥⎥⎥⎦
 

is a starting state for a game over R+ that exhibits non-repeating be
havior. 

In the following sections, we identify the value of λn as the posi
)n−1tive real root of the equation (1 − λn)(1 + λn = 1, and provide a 

construction of the particular state above. 

5.1. Linearizing the n-value game. Given an n-value game on R, 
with start state g = (a1, a2, . . . an), we produce each step by the trans
formation rule gt → gt+1 = (a1, a2, . . . an) → (|a2 −a1|, |a3 −a2|, . . . |a1 − 
an|). We can eliminate the use of the absolute value function by re
stricting the domain of the input to the set of vectors (m1,m2, . . .mn) 
such that m1 < m2 < . . . < mn. With this “increasing order” con
straint, we can write gt → gt+1 as an n × n linear operator Tn: 
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⎤⎡ 

Tn = 

⎢⎢⎢⎢⎢⎢⎣
 

−1 1 0 0 . . . 0
 
0 −1 1 0 . . . 0
 
0 0 −1 1 . . . 0
 
. . . 

. . . 
. . . . . . . . . 

. . . 
0 . . . . . . 0 −1 1 
−1 0 . . . . . . 0 1 

⎥⎥⎥⎥⎥⎥⎦
 

.
 

To compute the next state in a game, left-multiply the current state 
by Tn. As an example, consider the effects of T4 on g = (1, 5, 7, 11)T : ⎤⎡⎤⎡⎤⎡ 

−1 1 0 0 1 4
 ⎢⎢⎣
 
0 −1 1 0
 
0 0 −1 1
 

⎢⎢⎣ 
⎥⎥⎦ 

5
 
7
 

⎥⎥⎦
 =
 
⎢⎢⎣
 
2
 
4
 

⎥⎥⎦
.
 

−1 0 0 1 11 10 

As this example shows, it is not necessarily the case that the output 
gt+1 maintains the “increasing order” constraint. In general, increas
ing inputs are not guaranteed to produce increasing outputs. If gt 

happens to be a positive, increasing eigenvector of Tn (with a positive 
eigenvalue), however, we are guaranteed that the invariant will hold: 
the output gt+1 is guaranteed to be a scalar multiple of gt because 
T gt = λgt = gt+1. 
If our initial state g is a real non-zero eigenvector of Tn, then we are 

guaranteed that Tng = λg = 0. In general, for all k, Tn
kg = λkg = 0, so 

real, increasing eigenvectors of Tn are guaranteed to generate infinite 
length games. 

To demonstrate that there exists an infinite length game for all n, 
we must demonstrate the existence of a real, increasing, nonzero eigen
vector/value pair vn, λn for all n. 

5.2. Establishing and bounding a positive real eigenvalue. We 
seek to establish the existence of such a positive, increasing eigenvec
tor/eigenvalue pair. To do so, we look for the roots of the characteristic 
polynomial of Tn: 

⎤⎡ 

Sn = Tn − λIn = 

⎢⎢⎢⎢⎢⎢⎣
 

−1 − λ 1 0 0 . . . 0 
0 −1 − λ 1 0 . . . 0 
0 0 −1 − λ 1 . . . 0 
. . .. . .. . . . . .. . .. . . 

⎥⎥⎥⎥⎥⎥⎦
 

.
 

0 . . . . . . 0 −1 − λ 1
 
−1 0 . . . . . . 0 1 − λ
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Expanding det(Sn) by cofactors along the bottom row reduces the 
sub-determinants to two triangular matrices with special forms. 

⎞⎛ 

det(Sn) = −1(−1)1+n det 

⎜⎜⎜⎜⎝
 

1 0 0 . . . 0 
−1 − λ 1 0 . . . 0 

0 −1 − λ 1 . . . 0 
. .. . .. . . . .. . .. . 
0 . . . 0 −1 − λ 1 

⎟⎟⎟⎟⎠
 
+
 

⎞⎛ 

(1 − λ)(−1)n+n det 
⎜⎜⎝
 

−1 − λ 1 0 . . . 0 
0 −1 − λ 1 . . . 0 
. . . .. . . .. . . . 0 
0 . . . . . . 0 −1 − λ 

⎟⎟⎠
.
 

The determinant in the first term reduces to 1, and the determi
nant in the second term reduces to (−1 − λ)n−1 . The characteristic 
polynomial of Tn is (−1)2+n + (1 − λ)(−1)2n(−1 − λ)n−1 . Thus, the 
characteristic equation is 

(*) (−1)2+n + (−1 − λ)n−1 − λ(−1 − λ)n−1 = 0 

or 

(**) (1 − λ)(1 + λ)n−1 = 1 

We examine the pattern of signs on this polynomial to determine 
the number of positive roots. In each case, λ = 0 is a root, so the 
coefficient on the constant term is zero. 

When n is even, the sign pattern is (+, . . . , +, 0, −, . . . , −, 0)." .. " " .. " 
n n −1
2 2 

When n is odd, the sign pattern is (−, . . . , −, +, . . . , +, 0)." .. " " .. " 
n+1 n−1 
2 2 

Each case has exactly one change of sign, so there exists exactly 
one positive real root 0 < λn for each characteristic polynomial by 
Descartes’ Rule of Signs [1]. Additionally, we claim that λn < 1 for all 
n: dividing a polynomial P (x) by (x − k) will result in a polynomial 
with all positive coefficients if k is an upper bound for the positive 
roots [2, Eqn. 15]. Dividing each of the characteristic polynomials 
by (λn − 1) - easily accomplished by using the form from equation 
(∗∗) - yields polynomials with all positive coefficients for all n, which 
demonstrates that 1 is always the least integral upper bound. 
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5.3. Identifying an increasing eigenvector. To determine the cor
responding eigenvector vn = (a1, a2, . . . an), we solve (Tn−λnIn)vn = 0. 
This produces the following set of equations: 

(−1 − λn)a1 + a2 = 0 (1 + λn)a1 = a2 

(−1 − λn)a2 + a3 = 0 (1 + λn)a2 = a3 
. . . or . .. . 

(−1 − λn)an−1 + an = 0 (1 + λn)an−1 = an 

(1 − λn)an − a1 = 0 (1 − λn)an = a1 

Arbitrarily, let an = 1. This forces a1 = (1 − λn), which forces 
a2 = (1 − λn)(1 + λn). In general, for 1 ≤ i < n we have ai = 

)i−1(1 − λn)(1 + λn . An eigenvector that corresponds to the eigenvalue 
λn is thus ⎤⎡ ⎢⎢⎢⎢⎢⎢⎣
 

(1 − λn)
 
(1 − λn)(1 + λn)
 
(1 − λn)(1 + λn)

2
 

. . . 
)n−2(1 − λn)(1 + λn

1 

⎥⎥⎥⎥⎥⎥⎦
 

.
 

We verify that the entries of this eigenvector are in increasing order 
)k )k+1for all n: we have (1 − λn)(1 + λn < (1 − λn)(1 + λn because 

)k+1(1 + λn)
k < (1 + λn when 0 < λn and (1 − λn) > 0 when λn < 1 

- we can claim λn < 1 from the bound established above, and indeed, 
we conjecture that limn→∞ λn = 1. 
Empirically, for the n = 4 case, we have λ4 ≈ 0.839287, so the eigen

vector which generates a game of infinite length is approximately g = 
(0.160713, 0.295598, 0.543689, 1). The progression of this game after t 
timesteps results in gt = (0.839287)t · (0.160713, 0.295598, 0.543689, 1). 

5.4. Generating infinitely many solutions of infinite length. 
Our choice of an = 1 was arbitrary - the eigenvector we obtained was 
parametrized only on an. Choosing other values of an > 1 will lead 
to infinitely many such solutions. Additionally, we can use any other 
equivalent starting state to generate a new non-repeating game. 
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