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Abstract. We can associate any sequence of tosses of an unfair
coin with a binary number between 0 and 1. In this paper, we
explore some properties of the cumulative probability distribution
of this random variable.

1. Introduction

The result of n tosses of a two-headed coin can be represented by
an n-bit binary number in the interval [0,1]. The kth bit is 0 if the
kth toss comes up tails and 1 if it comes up heads. These represen-
tations correspond to rational numbers with denominators of the form
2k for some k, also known as the dyadic rationals. Similarly, an infinite
sequence of tosses gives us a binary representation that can represent
any real number in the interval [0,1].

Now let y be the outcome of an infinite toss. For any given real
number x ∈ [0, 1] we would like to determine the probability that
y ≤ x and we denote this probabilty by fp(x) where p ∈ (0, 1) is
the probability that a coin toss comes up heads. The following image
should provide some intuition about the behavior of fp.
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Figure 1. Graphs of fp for p = .1, .2, .3, .4, .5

For most values of p, the function fp is pathological, but it has many
interesting properties. In the following sections we prove continuity of
fp for p ∈ (0, 1), show that fp(x) is not differentiable at the dyadics
but not nowhere-differentiable and find the arc length of fp.
Sections 1, 3 by J.M. Náter
Sections 2, 6 by P. Wear
Sections 4, 5 by M. Cohen

2. Basic Properties

In this section, we go over some of the basic properties of fp. We
will show that fp is monotonically increasing, give a method of com-
puting rational values of fp, define some useful functional equations
describing fp, and use these equations to find the integral of fp and
show continuity.

One special case to consider comes when p = 1 . We can see that
2

f 1 (x) = x in this case. The coin is fair, so the probability that a set of
2

flips is less than x is equal to the probability that a random number in
[0, 1] is less than x. This is just x, so we have the desired equality. In
the rest of the paper, we will assume that p = 1 unless we specifically

2
state otherwise.

Proposition 2.1. For all p ∈ (0, 1), fp is monotonically increasing.

6
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Proof. We claim that if y > x then fp(y) > fp(x). We can see that
fp(y)−fp(x) is equal to the probability that a set of flips corresponds to
a number between y and x. This probability is positive and non-zero,
so we have the desired property. �

Proposition 2.2. For any p ∈ (0, 1), fp is a 180 degree rotation of
f1 p around the point (1/2, 1/2). To write this more mathematically,−
fp(x) = 1− f1 (1 x).−p −

Proof. fp(x) is the probability that a sequence of tosses of an unfair
coin will correspond to a number less than x. The probability that a
sequence of tosses will correspond to a number greater than x will then
be 1−fp(x). If we switch from the probability of heads being p to being
1− p, then the probability of a sequence being less than x becomes the
probability of a sequence being greater than 1− x. So 1− f1−p(1− x)
will be equal to fp(x) and we have the desired symmetry. �

Figure 2. Graphs of fp for p = .3, .7 to illustrate the
relation between fp and f1−p.

We will give a computation of fp(
1). This method can be seen to
3

extend to any non-dyadic rational, as they will all have repeating binary
expansions. The binary expansion for 1 is .01. We consider the possible

3
outcomes of an infinite sequence y of coin tosses. In order for y to be
less than .01, the first flip must come up tails. This will happen with
probability 1−p. If the second toss comes up tails the inequality is still
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satisfied, however if it comes up heads, for the rest of the inequality to
be satisfied the remaining tosses must represent a number less than or
equal to the remaining bits of 1 , which also have the form .01. So then( 3

1 1
fp = (1

3
− p)(1− p+ pfp) .

3
Solving this equation w

)
e get

( )

fp

(1

3

) (1
=

− p)2
.

p2 − p+ 1

We now introduce two functional equations that give us a method
for evaluating fp on any dyadic number. Given a dyadic x in [0, 1], for
an infinite flip sequence to be less than x the outcome of the first toss

2
must be tails and the rest of the tosses must represent a number less
than x. The probability of the first toss being tails is (1 − p) and the
probability of the rest of the flips being smaller than x is fp(x), so we
have

fp

(x
(1)

2

)
= (1− p)fp(x),

which immediately generalizes to fp(
x
2k

) = (1− p)kfp(x).

For the infinite toss sequence to give a number smaller than x + 1 the
2 2

first toss can come out either heads or tails. If it is tails the sequence
will necessarily be smaller. If it is heads, then the rest of the sequence
must give a number smaller( than) x, and so we have the second equation:

x 1
(2) fp + = 1− p+ pfp(x).

2 2

Every dyadic can be represented by a finite binary sequence (pre-
ceded by a decimal point of course) ending in a 1, and so we can start
with fp(.1) = (1− p) and keep iterating (1) and (2) depending on the
bits until we reach the desired dyadic.

These functional equations can also be used to find the integral of
the functions fp and prove that each function is continuous.

1

Proposition 2.3. We have the equality

∫
fp(x)dx = 1− p.

0

Proof. Using equation (1) on the entire interval [0, 1] will contract fp
onto the interval [0, 1/2] and using equation (2) will contract fp onto
[1/2, 1].∫ So

1 1 1 1

fp(x)dx = (

∫
(1− p)fp(x)dx+

0 2 0

∫
1

0

− p+ pfp(x)dx).
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Combining these∫two integrals gives
1 1 1

fp(x)dx =

∫
1− p+ fp(x)dx.

0 2 0

1 1 p 1

This leads to the equality 1

∫
fp(x)dx =

−
, so f

2
0 2

∫
p(x)dx = 1

0

−p
as desired. �

We end this section with a proof of continuity.

Theorem 2.4. For all p ∈ (0, 1), the function fp is continuous on the
interval [0, 1].

Proof. Because we have monotonicity it suffices to show that for any
x and any ε > 0 there are numbers y < x and y′ > x such that
fp(x) − fp(y) < ε and fp(y

′) − fp(x) < ε. Without loss of generality
assume p ≥ 1− p.

For any x ∈ (0, 1) and for any positive integer N there exists n > N
such that the nth bit of x is 0. If this were not the case then there
would be some point after which all the bits were 1, in which we could
use the substitution .01 = .10 to obtain the desired form.

Now let y′ = x+2−n, where the nth bit of x is 0. Any toss sequences
corresponding to a number smaller than y′ but greater than x will
agree with the first n − 1 bits of x, so because p ≥ 1 − p we have
fp(y

′) − fp(x) ≤ pn−1. As n approaches infinity fp(y
′) − fp(y) will

approach 0, so given any ε > 0 we can always choose an appropriate
y′.

We can find y < x similarly, as there will be infinitely many 1s in the
binary expansion of x and in this case we want to choose a 1 arbitrarily
far down the binary expansion and flip it to a 0. �

3. Non-Differentiability at dyadic points

Here we prove is not differentiable at the dyadic points.

Proposition 3.1. If x ∈ (0, 1) is a dyadic then the limit

fp(x+ h) f′ p
fp(x) = lim

− (x)

h→0 h
does not exist.

Proof. We use the fact that any dyadic number can be represented by
starting with fp(.1) = (1− p) and then iterating between (1) and (2).
Let x be a dyadic whose last nonzero bit is in the kth place and choose
h = 1

2n
. Also, AWLOG p > 1 − p. Using the iteration process to

compute fp(x+ h), if we stop the process after having n− k + 1 steps
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(where the first step is f(.1) = 1− p) we have q+ p(1− p)n−k. Starting
from the end, this covers the bits up to and including the last nonzero
bit of x. The rest of the iterations will multiply this quantity by a
factor of at least (1 − p)k − 1. The rest of the terms are shared by
fp(x+ h) and fp(x). So then we know the difference

f (x+ h)− f (x) = (1− p)k−1(1− p+ p(1− p)n−k)− (1− p)k 1
p p

−

= p(1− p)k−1 + (1− p)n−1.
Since the limit

lim 2n · (p(1− p)k−1 + (1
n→∞

− p)n−1)

does not converge fp
′(x) does not exist.

�

4. Differentiability at x = 1
3

Despite fp not being differentiable on a dense set of its domain we
know it is not nowhere-differentiable. We show this by computing its
derivative at the point x = 1 . First notice that the binary represen-

3

tation of 1 is .01, so that the probability that the outcome of 2n coin
3

tosses matches the first 2n bits of .01 is pn(1− p)n. Now consider the
fp(x+ h)− fp(x)

definition of the derivative fp
′(x) = lim . As in the

h→0 h
proof of continuity, we can choose a 0 arbitrarily far down the binary
representation of 1 . In particular, we know the odd bits in the binary

3

representation of 1 are equal to 0. So then choosing h = 1 and
3 (2k+1)

adding it to 1 will flip the (2k + 1)th bit to a 1. Then we can bound
3

f ′(1) by 22k+1
3

· (p(1 − p))k = 2 · 4k · (p(1 − p))k. Also notice by the
inequality of arithmetic and geometric means we have

1
(3)

4
≥ p(1− p)

Equality is achieved only for p = 1 , but recall we are not considering
2

that case so we can take the inequalities to be strict. So then 4 · p(1−
p) < 1 and so

lim 2 · (4p(1− p))k = 0,
k→∞

which, because as k approaches infinity h approaches 0, is equivalent
to saying f ′(1) = 0. In the case p = 1 the function f 1 (x) is exactly the

3 2 2

line y = x which is also differentiable.
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5. Defining arc length

An interesting question to ask about fp is: what is the arc length
of its graph? In order to rigorously investigate this, however, we will
need an actual definition of arc length. To introduce one, we must first
define a partition:

Definition 5.1. A partition P of the closed interval [a, b] is a finite
sequence of n points xi satisfying x1 = a, xn = b, and xi ≤ xi+1 for all
i where both are defined. Part[a, b] is the set of all partitions of [a, b].

A partition can be viewed as a way to split [a, b] into the subintervals
[xi, xi+1]. Note that this notion of a partition is also used in the defi-
nition of Riemann integration. We define a notion of an approximate
arc length using a partition:

Definition 5.2. Let c be a (vector-valued) function (parametrizing a
curve) defined on [a, b], and let P be a partition of [a, b], consisting of
xi for 1 ≤ i ≤ n. Then the P -length of c is:

n−1

(4) LP (c) =
∑
k=1

|c(xk+1)− c(xk)|

The P -length essentially gives an approximate arc length, defined
with the granularity given by the partition. It is the arc length that c
would have if it consisted of a collection of line segments, each covering
a segment from P , but with the correct value on the endpoints of each
segment. We can now define the actual arc length:

Definition 5.3. Let c be a parametrization of a curve defined on [a, b].
Then the arc length of c on [a, b] is

(5) s = sup LP (c)
P∈Part[a,b]

The motivation for this definition is that the P -lengths define the
lengths of arbitrarily fine approximations to c, but the P -lengths should
always be at most the actual arc length (since lines are the shortest
path between two points). In fact, this supremum is also a sort of limit:

Lemma 5.4. Let c be a parametrization of a curve defined on [a, b],
with finite arc length s defined according to 5.3. Then for any ε, there
exists a δ such that for all partitions P with fineness at most δ, |s −
LP | < ε.

In other words, not only do there exist partitions with arc lengths
arbitrarily close to s, but all sufficiently fine partitions have arc lengths
arbitrarily close to s. The lemma can be proved with a relatively
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simple bounding argument; the detailed proof is omitted here, since it
is not the focus of this paper. The lemma could be taken as giving an
alternative, possibly more natural definition for the arc length of s; this
definition is very similar to that of the Riemann integral. It will not
be used for the remainder of this paper, but is mentioned because it
justifies using the supremum definition which will be very convenient.

In this paper, we are specifically considering the arc lengths of the
graphs of functions. The graph of a function f on [a, b] can be parametrized
as

(6) c(x) = 〈x, f(x)〉

The P -length for a partition consisting of xi is then

n−1

(7) LP (c) =
∑
|〈xk+1 − xk, f(xk+1)− f(xk)

k=1

〉|

We can use structural properties of a function to bound the arc
length of its graph on an interval. Consider that |〈xk+1−xk, f(xk+1)−
f(xk)〉| is bounded above (by the triangle inequality) by (xk+1− xk) +
|f(xk+1)− f(xk)|. In the special case when f is monotonically increas-
ing, f(xk+1)−f(xk) is always nonnegative, so we can drop the absolute
value there: |〈xk+1 − xk, f(xk+1)− f(xk)〉| ≤ (xk+1 − xk) + (f(xk+1)−
f(xk)). That can be used to bound LP (f) for any partition P of [a, b]:

n−1

LP (f) =
∑
|〈xk+1 − xk, f(xk+1)

k=1

− f(xk)〉|

n−1

≤
∑

(xk+1 − xk) + (f(xk+1)− f(xk))

(8) (k=1

n−1
) (

n−1

= xk+1

k=1

− xk + f(xk+1)
k=1

− f(xk)

)
= (x

∑
n − x1) + (f(xn)− f

∑
(x1))

= (b− a) + (f(b)− f(a))

Since the arc length is the supremum of the LP , that gives rise to the
following lemma:

Lemma 5.5. Let f be a monotonically increasing function defined on
[a, b]. Then the arc length of f is at most (b− a) + (f(b)− f(a)), and
in particular is finite.
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6. Arc length of fp

We now have the machinery to investigate the arc length of the fp
on [0, 1]. There are two quite distinct cases: p = 1 and p = 1 . In the

2 2

former case, the arc length is clearly just
√

2, since it is a straight line.
The remainder of this section will assume that p = 1 .

2
For these other values of p, we don’t have such an immediately obvi-

ous answer. However, we do know that fp is monotonically increasing,
and that fp(0) = 0 and fp(1) = 1. Then by 5.5 the arc lengths must
be at most 2.

In this section, we will show that that bound is in fact tight.

Theorem 6.1. The arc length of the graph of fp, for any p = 1 , on
2

[0, 1], is 2.

This, on its face, is somewhat surprising. Despite the fact that fp
is continuous, its arc length is the same as it would be if it were a
monotonic step function covering the same range.

In fact, the proof can be interpreted as showing that fp is “almost
a step function”. In particular, the graph of fp can be broken down
into segments where almost all of the increase in x is covered by seg-
ments that are nearly horizontal, but almost all of the increase of fp(x)
happens over intervals that are very steep, almost vertical.

We will prove a lower bound on the Pn-lengths for particular parti-
tions Pn. The partition Pn consists of the points xi = i−1

2n
for 1

n

≤ i ≤
2 + 1. These partitions have the property that xi+1 − x 1

i is always
2n

:
they divide [0, 1] into 2n equal segments. To obtain bounds, we will
estimate the distribution of fp(xi+1) − fp(xi): that is, the increase in
fp over each segment of the partition.

The xi (for 1 ≤ i ≤ 2n) are precisely those numbers in [0, 1] whose
binary expansion is all zeroes after the first n places after the decimal
point, because they are obtained by dividing integers by 2n (which
shifts the binary expansion by n places to the right).

It turns out that we can give a quite simple description of the value
of fp(xi+1)− fp(xi):

Lemma 6.2. For all i satisfying 1 ≤ i ≤ 2n, let a be number of ones
in the binary expansion of xi (up to the nth place) and b the number of
zeroes. Then fp(x

a
i+1)− fp(xi) = p (1− p)b.

Proof. The proof will precede by induction. For notational convenience,
we define a function

1
(9) D(y,m) = f

(
y +

2m

)
− f(x)

6

6

6
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so that

(10) f(xi+1)− f(xi) = D(xi, n)

We will prove that for all nonnegative integers m, all y in [0, 1) such
that 2my is an integer, D(y,m) = pa(1 − p)b (with a and b defined
analogously to the statement of the lemma, using y and m in place of
xi and n). This directly implies the truth of the lemma by 10.

The proof will proceed by induction on m. If m = 0, it is trivial: y
must be 0, and D(0, 0) = fp(1)− f 0 0

p(0) = 1 = p (1− p) , as expected.
For m > 0, we will use the functional equations 1 and 2 that apply

for all x in [0, 1].
First, note that if y is in [0, 1), y + 1 1

2 2m
is in [0, ] since they are all

2

multiples of 1
m . Otherwise, both must be in [1 , 1]. The former case

2 2
corresponds precisely to the first bit after the decimal place being 0,
and the latter corresponds to it being 1.

• In( the former) case, we can apply 1 with x = 2y and x =
2 y + 1

2m
to get

( fp(y)) = (1− p)fp(2y)

1 1
fp y + = (1

2m
− p)fp

(
2y +

2m−1

)
This gives

1
(11) fp

(
y +

)
− fp(y) = (1− p)D(2y,m

2m
− 1)

Replacing y by 2y and m by m − 1 is precisely stripping the
leading 0 from the binary expansion, while otherwise keeping
the numbers of zeroes and ones up to the mth place the same.
The requirements for the lemma are preserved. Thus, by the
induction hypothesis, D(2y,m−1) = pa(1−p)b−1, so D(y,m) =
pa(1− p)b.
• The latter(case is )similar. Here, we apply 2 with x = 2y − 1

and x = 2 y + 1
2m
− 1, getting

( fp(y)) = 1− p+ pfp(2y − 1)

1 1
fp y + = 1

2m
− p+ pfp(2y − 1 + )

2m−1

fp

(
1

y +

)
− fp(y) = pD(2y − 1,m 1)

2m
−

Replacing y by 2y−1 and m by m−1 is stripping the leading 1
but otherwise keeping the bits the same, and the requirements
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for the lemma are again preserved. Thus, by the induction
hypothesis, D(2y − 1,m − 1) = pa−1(1 − p)b, so D(y,m) =
pa(1− p)b.

This completes the induction. �

This lemma implies that f(xi+1)− f(xi) is pa(1− p)b, where a is the
number of ones and b the number of zeroes in the binary expansion of
xi, up to the nth place. If we define

p if the kth bit in the binary expansion of xi is 1
(12) bk =

{
1− p if the kth bit in the binary expansion of xi is 0

then we can alternatively write

n

(13) f(xi+1)− f(xi) =
k

∏
bk

=1

We will now look at xi as a random variable, with i chosen uniformly
out of the integers from 1 to 2n. In order to apply standard probabilistic
reasoning, it will be helpful to deal with a sum rather than a product.
We thus write

n

(14) log2(f(xi+1)− f(xi)) =
∑

log2 bk
k=1

It is important to note that each bit in the binary expansion of xi
is independent of all the rest, so the bk (and log2 bk) are independent
random variables. Furthermore, each of bk (and each of log2 bk) has the
same distribution (since the probability of each bit being 0 is always
1). We let µ be the mean value of log2 dk and σ2 be the variance. Note
2
that the probability distribution of an individual dk does not depend
on n, so neither do µ or σ. Since the probability of picking each value
is 1 ,

2

1
µ = (log

2 2 p+ log2(1− p))

= log
(15) 2

√
p(1− p)

1
< log2 (by 3)

2
= −1

Since µ < −1, we can then pick some real number r such that µ <
r < −1. We will take any such r (again, not depending on n).
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We need not calculate σ2 explicitly; what is important is that it is
constant over choice of n and that it is finite (since it applies to a
discrete probability distribution).

Since log2(f(xi+1)− f(xi)) is the sum of n independent instances of
the same probability distribution, it has mean nµ and variance nσ2.
Then we can apply Chebyshev’s inequality to bound the probability qn
that log2(f(xi+1)− f(xi)) > nr: the inequality says this probability is
at most

nσ2 1 σ2

(16) =
(nr − nµ)2 n

·
(r − µ)2

This implies

Proposition 6.3. For any ε > 0, there exists an N such that if n ≥ N ,
qn ≤ ε .

2

The truth of the proposition is immediate apparent: one can simply
set N to 2 · σ2

. Notably, exponentiating both sides shows that q− nε (r µ)2

is actually the probability that f(xi+1)− f(xi) > 2nr. This effectively
shows that for sufficiently large N , most of the intervals have relatively
small increases of f .

Since r < −1, we also have the following fact about 2n(r−1)

Proposition 6.4. For any ε > 0, there exists an N ′ such that if n
N ′, 2n(r+1) ε

≥
< .

2

This is just a statement that the limit of a decaying exponential is
0.

Given any ε > 0, we will then pick n as max(N,N ′). We divide the
i (for i from 1 to 2n) into “good” and “bad” values: “good” values
satisfy f(xi+1)−f(xi) ≤ 2nr while “bad” ones do not. For each “good”
i,

f(xi+1)− f(xi) ≤ 2nr

= 2−n(17) · 2n(r+1)

ε
< 2−n

2

Since there are only 2n values of i, the sum of these differences over
all good i is less than ε . On the other hand, the sum over all i is

2
f(x2n+1) − f(x1) = 1. Thus the sum of f(xi+1) − f(xi) over all bad
i is greater than 1 − ε . Furthermore,

2
|〈xi+1 − xi, f(xi+1) − f(xi)〉| ≥

f(xi+1)− f(xi), so the sum of |〈xi+1−xi, f(xi+1)− f(xi)〉| over all bad
i is greater than 1− ε .

2
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Since all i were chosen with equal probability, the number of bad i is
equal to 2n times the probability than an i is bad, which is less than ε ,

2
so this number is less than 2n ε . Then the number of good i is greater

2

than 2n(1 − ε ). Since xi+1 − xi = 2−n, |〈xi+1 − xi, f(xi+1) − f(xi)2
〉|

is always greater than 2−n for any i, so the sum of this over all xi is
greater than 1 − ε . Then the sum of this over all i, good and bad, is

2
greater than 2− ε.

This sum is precisely the LP . Thus, for any ε > 0, the arc length
must be greater than 2 − ε; thus the arc length must be at least 2.
Since it cannot be > 2, it must equal 2.
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7. Further Possibilities

A natural extension of this question is to consider n-sided coins a.k.a.
dice. Many of the results from this paper can be generalized to dice with
an arbitrary number of sides, but the graphs of the resulting functions
become even more complex. One interesting case arises when we take
a 3-sided coin such that the probabilities of two of the faces are 1/2
each and the probability of the third face is 0. This gives the Cantor
function a.k.a. the Devil’s staircase, as we are essentially converting
binary numbers to trinary.

Figure 3. The Devil’s staircase.
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