
Chapter 5

Characteristic classes, Steenrod
operations, and cobordism

33 Chern classes, Stiefel-Whitney classes, and the Leray-Hirsch
theorem

A good supply of interesting geometric objects is provided by the theory of principal G-bundles, for
a topological group G. For example giving a principal GLn(C)-bundle over X is the same thing as
giving a complex n-plane bundle over X.

Principle bundles reflect a great deal of geometric information in their topology. This is a
great asset, but it can make them correspondingly hard to visualize. It’s reasonable to hope to
construct invariants of principal G-bundles of some more understandable sort. A good candidate is
a cohomology class.

So let’s fix an integer n and an abelian group A, and try to associate, in some way, a class
c(ξ) ∈ Hn(Y ;A) to any principal G-bundle ξ over Y . To make this useful, this association should
be natural: given f : X → Y and a principal G-bundle ξ over Y , we can pull ξ back under f
to a principal G-bundle f∗ξ over X, and find ourselves with two classes in Hn(X;A): f∗c(ξ) and
c(f∗(ξ)). Naturality insists that these two classes coincide. This means, incidentally, that c(ξ)
depends only on the isomorphism class of ξ. Let BunG(X) denote the set of isomorphism classes of
principal G-bundles over X; it is a contravariant functor of X. We have come to the definition:

Definition 33.1. Let G be a topological group, A an abelian group, and n ≥ 0. A characteristic
class for principal G-bundles with values in Hn(−;A) is a natural transformation of functors Top→
Set:

c : BunG(X)→ Hn(X;A) .

Cohomology classes are more formal or algebraic, and are correspondingly relatively easy to work
with. BunG(X) is often hard (or impossible) to compute, partly because it has no algebraic structure
and partly exactly because its elements are interesting geometrically, while Hn(X;A) is relatively
easy to compute but its elements are not very geometric. A characteristic class provides a bridge
between these two, and information flows across this bridge in both directions. It gives computable
information about certain interesting geometric objects, and provides a geometric interpretation of
certain formal or algebraic things.

Example 33.2. The Euler class is the first and most fundamental characteristic class. Let R be
a commutative ring. The Euler class takes an R-oriented real n-plane bundle ξ and produces an
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120 CHAPTER 5. CHARACTERISTIC CLASSES

n-dimensional cohomology class e(ξ), given by the transgression of the class in H0(B;Hn−1(Sξ))
that evaluates to 1 on every orientation class. Naturality of the Gysin sequence shows that this
assignment is natural. There are really only two cases: R = Z and R = F2. A Z-orientation of a
vector bundle is the same thing as an orientation in the usual sense, and the Euler class is a natural
transformation

e : Vectorn (X) = BunSO(n)(X)→ Hn(X;Z) .

Any vector bundle is canonically F2-oriented, so the mod 2 Euler class is a natural transformation

e : Vectn(X) = BunO(n)(X)→ Hn(X;F2) .

On CW complexes, BunG(−) is representable: there is a “universal” principal G-bundle ξG :
EG ↓ BG such that

[X,BG]→ BunG(X) , f 7→ f∗ξG

is a bijection. A characteristic classes BunG(−) → Hn(−;A) is the same thing as a class in
Hn(BG;A), or, since cohomology is also representable, as a homotopy class of maps BG→ K(A,n).

Thus for example set of all integral characteristic classes of complex line bundles is given by
H∗(BU(1)) = Z[e]. Is there an analogous classification of characteristic classes for higher dimen-
sional complex bundles? How about real bundles?

Chern classes

We’ll begin with complex vector bundles. Any complex vector bundle (numerable of course) admits
a Hermitian metric, well defined up to homotopy. This implies that BunU(n)(X)→ BunGLn(C)(X)
is bijective; BU(n) → BGLn(C) is a homotopy equivalence. I will tend to favor using U(n) and
BU(n).

A finite dimensional complex vector space V determines an orientation of the underlying real
vector space: Pick an ordered basis (e1, . . . , en) for V over C, and provide V with the ordered basis
over R given by (e1, ie1, . . . , en, ien). The group AutC(V ) acts transitively on the space of complex
bases. But choosing a basis for V identifies Aut(V ) with GLn(C), which is path connected. So the
set of oriented real bases obtained in this way are all in the same path component of the set of all
oriented real bases, and hence defines an orientation of V .

This construction yields a natural transformation VectC(−)→ VectorR (−). In particular, the real
2-plane bundle underlying a complex line bundle has a preferred orientation – the determined in
each fiber ξx by (v, iv) where v 6= 0 in ξx. A complex line bundle ξ over B thus has a well-defined
Euler class e(ξ) ∈ H2(B; Z).

Theorem 33.3 (Chern classes). There is a unique family of characteristic classes for complex vector
bundles that assigns to a complex n-plane bundle ξ over X its kth Chern class c(n)

k (ξ) ∈ H2k(X; Z),
k ∈ N, such that:

• c(n)
0 (ξ) = 1.

• c(1)
1 (ξ) = −e(ξ).

• The Whitney sum formula holds: if ξ is a p-plane bundle and η is a q-plane bundle, then

c
(p+q)
k (ξ ⊕ η) =

∑
i+j=k

c
(p)
i (ξ) ∪ c(q)

j (η) ∈ H2k(X; Z).
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Moreover, if ξn is the universal n-plane bundle, then

H∗(BU(n); Z)∼= Z[c
(n)
1 , . . . , c(n)

n ]

where c(n)
k = c

(n)
k (ξn).

This result says that all characteristic classes for complex vector bundles are given by polynomials
in the Chern classes, and that there are no universal algebraic relations among the Chern classes.
(Shiing-Shen Chern (1911–2004) was a father of twentieth century differential geometry, and a huge
force in the development of mathematics in China.)

Remark 33.4. Since BU(n) supports the universal n-plane bundle ξn, the Chern classes c(n)
k =

c
(n)
k (ξn) are themselves universal, pulling back to the Chern classes of any other n-plane bundle.

The (p + q)-plane bundle ξp × ξq = pr∗1ξp ⊕ pr∗2ξq over BU(p) × BU(q) is classified by a map
µ : BU(p)×BU(q)→ BU(p+q). The Whitney sum formula computes the effect of µ on cohomology:

µ∗(c
(n)
k ) =

∑
i+j=k

c
(p)
i × c

(q)
j ∈ H

2k(BU(p)×BU(q)) ,

where, you’ll recall, x× y = pr∗1x ∪ pr∗2y.

The Chern classes are “stable” in the following sense. Let ε be the trivial one-dimensional complex
vector bundle over X and let ξ be an n-dimensional vector bundle over X. What is c(n+q)

k (ξ ⊕ qε)?
The trivial bundle is obtained by pulling back under X → ∗:

X ×Cq = E(qε) //

��

Cq

��
X // ∗

By naturality, we find that c(n)
j (nε) = 0 for j > 0. The Whitney sum formula therefore implies that

c
(n+q)
k (ξ ⊕ qε) = c

(n)
k (ξ).

Thus the Chern class only depends on the “stable equivalence class” of the vector bundle. Also, the
map BU(n− 1)→ BU(n) classifying ξn−1 ⊕ ε sends c(n)

k to c(n−1)
k for k < n and c(n)

n to 0.
For this reason, we will drop the superscript on c(n)

k (ξ), and simply write ck(ξ).

Grothendieck’s construction

Let ξ : E
p−→ X be a complex n-plane bundle. Associated to it is a fiber bundle whose fiber over

x ∈ X is P(p−1(x)), the projective space of the vector space given by the fiber of ξ over x. This
“projectivization” can also be described using the GLn(C) action on CPn−1 = P(Cn) induced from
its action on Cn, and forming the balanced product

P(ξ) = P ×GLn(C) CPn−1

where P ↓ X is the principalization of ξ.
Let us attempt to compute the cohomology of P(ξ) using the Serre spectral sequence:

Es,t2 = Hs(X;Ht(CPn−1))⇒ Hs+t(P(ξ)).

We claim that this spectral sequence almost completely determines the cohomology of P(ξ) as
a ring. Here is a general theorem that tells us what to look for, and what we get.
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Theorem 33.5 (Leray-Hirsch). Let π : E → B be a fibration and R a commutative ring. Assume
that B is path connected, so that the fiber is well defined up to homotopy. Call it F , and suppose
that for each t the R-module Ht(F ) is free of finite rank. Finally, assume that the restriction
H∗(E) → H∗(F ) is surjective. (One says that the fibration is “totally non-homologous to zero.”)
Because Ht(F ) is a free R-module for each t, the surjection H∗(E) → H∗(F ) admits a splitting;
pick one, say s : H∗(F )→ H∗(E). The projection map renders H∗(E) a module over H∗(B). The
H∗(B)-linear extension of s,

s : H∗(B)⊗R H∗(F )→ H∗(E)

is then an isomorphism of H∗(B)-modules.

Proof. First we claim that the group π1(B) acts trivially on the cohomology of F = π−1(∗). The
map of fibrations

E
1 //

π
��

E

��
B // ∗

shows that the map H∗(F ) → H∗(E) is equivariant with respect to the group homomorphisms
π1(B) → π1(∗). In cohomology, this says that the restriction H∗(E) → H∗(F ) has image in the
π1(B)-invariant subgroup (which, by the way, is H0(B;H∗(F ))). So the assumption that this map
is surjective guarantees that the action of π1(B) on H∗(F ) is trivial.

Now the edge homomorphism in the Serre spectral sequence

Es,t2 = Hs(B;Ht(F )) =⇒
s
Hs+t(E)

is that restriction map. Our assumption that Ht(F ) is free of finite rank implies that

Es,t2 = Hs(B)⊗R Ht(F )

as R-algebras. All the generators lie on either t = 0 or s = 0. The ones on the base survive because
the differentials hit zero groups. The generators on the fiber survive by assumption. So inductively
you find that Er = Er+1, and hence that the entire spectral sequence collapses at E2.

We now define a new filtration on H∗(E) with the advantage that it is a filtration by H∗(B)-
modules. I call it the “Quillen filtration,” though it is probably older. It’s the increasing filtration
given by

FtH
n(E) = Fn−tHn(E) .

For instance, F0H
n(E) = FnHn(E) = im(Hn(B)→ Hn(E))∼=Hn(B); or

F0H
∗(E) = im(H∗(B)→ H∗(E)) .

On the level of associated graded modules,

grtH
n(E) = Fn−tHn(E)/Fn−t+1Hn(E) = En−t,t∞

– that is, the tth row: so

grtH
∗(E) = E∗,t∞ = E∗,t2 = H∗(B)⊗Ht(F )

Now we can think about the map s : H∗(B) ⊗ H∗(F ) → H∗(E). Filter H∗(B) ⊗ H∗(F ) by
degree in H∗(F ):

Ft(H
∗(B)⊗H∗(F )) = H∗(B)⊗

⊕
i≤t

H i(F ) .
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The map s respects filtrations and is an isomorphism on associated graded modules: so it is an
isomorphism.

Returning now to the example of the projectivization of a vector bundle, P(ξ) ↓ X, the hypothe-
ses of the Leray-Hirsch Theorem are satisfied except perhaps surjectivity of the restriction to the
fiber.

Here’s where the representation of a cohomology class as a characteristic class comes in useful.
The cohomology of the fiber over x ∈ X is generated as an R-module by powers of the Euler class
of the canonical line bundle λx over P(ξx). Since i∗ : H∗(E) → H∗(CPn−1) is an R-algebra map,
it will suffice to see that e(λx) is in the image of i∗. Since the Euler class is natural, the natural
thing to do is to construct a line bundle over the whole of P(ξ) that restricts to λx on ξx. And
indeed these line bundles over fibers assemble themselves into a tautologous line bundle, call it λ,
over P(ξ).

So we have an expression for H∗(P(ξ)) as a module over H∗(X):

H∗(P(ξ)) = H∗(X)〈1, e, e2, . . . , en−1〉 .

where e = e(λ) ∈ H2(P(ξ)). This gives us some information about the algebra structure inH∗(P(ξ)),
but not complete information. What is lacking is an expression for en in terms of the basis given by
lower powers of e. The Euler class e satisfies a unique monic polynomial equation cξ(e) = 0, where
cξ(t) is the “Chern polynomial”

cξ(t) = tn + c1t
n−1 + · · ·+ cn−1t+ cn .

with ck ∈ H2k(X).
The naturality of this construction guarantees that the ck’s are natural in the n-plane bundle

ξ; they are characteristic classes. We will see that they satisfy the axioms for Chern classes set out
above.

Note that the Whitney sum formula has a nice expression in terms of the Chern polynomials:

cξ(t)cη(t) = cξ⊕η(t) .

Stiefel-Whitney classes

Exactly parallel theorems hold for real n-plane bundles, with mod 2 coefficients:

Theorem 33.6 (Stiefel-Whitney classes). There is a unique family of characteristic classes for
real vector bundles that assigns to a real n-plane bundle ξ over X its “kth Stiefel-Whitney class”
wk(ξ) ∈ H2k(X;F2), k ∈ N, such that:

• w0(ξ) = 1.

• If n = 1 then w1(ξ) = e(ξ).

• The Whitney sum formula holds: if ξ is a p-plane bundle and η is a q-plane bundle, then

wk(ξ ⊕ η) =
∑
i+j=k

wi(ξ) ∪ wj(η) ∈ H2k(X;F2).

Moreover, if ξn is the universal n-plane bundle, then

H∗(BO(n);F2)∼=F2[w1, . . . , wn]

where wk = wk(ξn).
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And the same construction produces them:

H∗(P(ξ);F2) = H∗(B;F2)[e]/(en + w1e
n−1 + · · ·+ wn−1e+ wn)

for unique elements wi ∈ H i(B;F2).

Remark 33.7. The Euler class depends only on the sphere bundle of the vector bundle ξ, but these
constructions depend heavily on the existence of an underlying vector bundle. This is a genuine
dependence in the case of Chern classes, but it turns out that the Stiefel-Whitney classes depend
only on the sphere bundle. We’ll explain this a little while.

Remark 33.8. In the complex case, the triviality of the local coefficient system can be verified in
other ways as well. After all, the action of π1(X) on the fiber H∗(CPn−1) is compatible with the
action of π1(BU(n)) on the homology of the fiber of the projectivized universal example. But since
U(n) is connected, its classifying space is simply connected.

You can’t make this argument in the real case, but then you don’t have to since we are looking
at an action of π1(B) on a one-dimensional vector space over F2.

Example 33.9. Complex projective space CPn is a complex manifold, and its tangent bundle is
thereby endowed with a complex structure. A standard argument shows that

τCPn = Hom(λ, λ⊥) .

Adding ε = Hom(λ, λ), we find
τCPn ⊕ ε = (n+ 1)λ .

Thus by the Whitney sum formula

cτ (t) = cτ⊕ε(t) = cλ(t)n+1 = (1− e)n+1

and so
ck(τCPn) = (−1)k

(
n+ 1

k

)
ek .

34 H∗(BU(n)) and the splitting principle

Here’s another description of the Chern classes.

Theorem 34.1. Let n ≥ 1. There is a unique family of characteristic classes ci(ξ) ∈ H2i(B(ξ)),
1 ≤ i ≤ n, for complex n-plane bundles ξ such that if ξ is isomorphic to ζ ⊕ (n− i)ε then

ci(ξ) = (−1)ie(ζ)

where e(ζ) is the Euler class of the oriented real 2i-bundle underlying ζ. These classes generate
all characteristic classes for n-plane bundles and there are no universal algebraic relations among
them.

We will prove this by computing the cohomology of BU(n), by induction on n. Here’s how
BU(n) and BU(n− 1) are related. Embed U(n− 1) ↪→ U(n) by

A 7→
[
A 0
0 1

]
.
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This subgroup is exactly the set of matrices fixing the last basis vector en in Cn. The orbit of en
is the subspace S2n−1 of unit vectors in Cn, which is thus identified with the homogeneous space
U(n)/U(n− 1).

Make a choice of EU(n) – a contractible on which U(n) acts principally – the Stiefel model
Vn(C∞) for example. The orbit space is then the Grassmann model for BU(n). The subgroup
U(n− 1) also acts principally on EU(n), so we get a model for BU(n− 1):

BU(n− 1) = EU(n)/U(n− 1) = (EU(n)×U(n) U(n))/U(n− 1) =

EU(n)×U(n) (U(n)/U(n− 1)) =EU(n)×U(n) S
2n−1 .

This establishes p : BU(n − 1) → BU(n) as the unit sphere bundle in the universal complex
n-plane bundle ξn. The map BU(n− 1)→ BU(n) classifies the n-plane bundle ξn−1 ⊕ ε.

Here’s a restatement of Theorem 34.1 in terms of universal examples.

Theorem 34.2. There exist unique classes ci ∈ H2i(BU(n)) for 1 ≤ i ≤ n such that:

1. the map p∗ : H∗(BU(n))→ H∗(BU(n− 1)) sends

ci 7→

{
ci for i < n

0 for i = n .

2. the Euler class e of the oriented real 2n-plane bundle underlying the universal complex n-plane
bundle ξn is related to the top class cn by the equation

cn = (−1)ne ∈ H2n(BU(n)) .

Moreover,
H∗(BU(n)) = Z[c1, . . . , cn] .

We postpone the verification that the classes we constructed in the last lecture coincide with
these.

Proof. We will study the Gysin sequence of the spherical fibration

S2n−1 → BU(n− 1)
p−→ BU(n) .

For a general oriented spherical fibration

S2n−1 → E
p−→ B

the Gysin sequence takes the form

· · · → Hq−1(E)
p∗−→ Hq−2n(B)

e·−→ Hq(B)
p∗−→ Hq(E)

p∗−→ Hq−2n+1(B)→ · · · .

where e ∈ H2n(B) is the Euler class.
Suppose we know that H∗(E) vanishes in odd dimensions. Then either the source or the target

of each instance of the Umkher map p∗ is zero, so we receive a short exact sequence

0→ Hq−2n(B)
e·−→ Hq(B)

p∗−→ Hq(E)→ 0 .

This shows several things:
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• e ∈ H2n(B) is a non-zero-divisor;

• p∗ is surjective and induces an isomorphism H∗(B)/(e)→ H∗(E);

• p∗ is an isomorphism in dimensions less than 2n;

• Hq(B) = 0 for q odd.

The last is clear for q < 2n, but feeding this into the leftmost term we find by induction that
Hq(B) = 0 for all odd q.

Now let’s suppose in addition thatH∗(E) is a polynomial algebra. Lift the generators to elements
in H∗(B). (If they all happen to lie in dimension less than 2n, these lifts are unique.) Extending
to a map of algebras gives a map H∗(E)→ H∗(B). Further adjoining e gives us an algebra map

H∗(E)[e]→ H∗(B)

which when composed with p∗ kills e and maps H∗(E) by the identity. We claim this map is an
isomorphism. To see this, filter both sides by powers of e. Modulo e this map is an isomorphism
from what we observed above. On both sides, multiplication by e induces an isomorphism from one
associated quotient to the next, so the map induces an isomorphism on associated graded modules.
The five-lemma shows that it induces an isomorphism mod ek for any k. But the powers of e increase
in dimension, so we obtain an isomorphism in each dimension.

These observations provide the inductive step. All that remains is to start the induction. We
can, if we like, use what we know about H∗(CP∞) and start with n = 2, though starting at n = 1
makes sense too, and provides another perspective on the computation of H∗(CP∞).

We define cn ∈ H2n(BU(n)) to be (−1)ne(ξn), also a generator. The choice of sign will make it
agree with our earlier definition.

Once we verify that these classes coincide with the classes constructed in the last lecture, we
will have available an important interpretation of the top Chern class: up to sign it is the Euler
class of the underlying oriented real vector bundle.

The splitting principle

A wonderful fact about Chern classes is that it suffices to check relations among them on sums of
line bundles. This is captured by the following theorem.

Theorem 34.3 (Splitting principle). Let ξ : E ↓ X be a complex n-plane bundle. There exists a
map f : Fl(ξ)→ X such that:

1. f∗ξ∼=λ1 ⊕ · · · ⊕ λn, where the λi are line bundles on Fl(ξ), and

2. the map f∗ : H∗(X)→ H∗(Fl(ξ)) is monic.

Proof. We have already done the hard work, in our study of the projectivization π : P(ξ) → X.
We found that the Serre spectral sequence collapses at E2. This implies that the projection map
induces a monomorphism in cohomology. We used the “tautologous” line bundle λ on P(ξ). The key
additional point about this construction is that there is a canonical embedding λ ↪→ π∗ξ of vector
bundles over P(ξ). A vector in E(λ) is (v ∈ L ⊆ ξx) (where L is a line in the fiber ξx). A vector in
the pullback π∗ξ is (v ∈ ξx, L ⊆ ξx).

By picking a metric on ξ we see that when pulled back to P(ξ) a line bundle splits off. Now
just induct (using our important standing assumption that vector bundles have finite dimensional
fibers).
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It’s worth being more explicit about what this “flag bundle” Fl(ξ) is. The complement of λ in π∗ξ
over P(ξ) is the the space of vectors of the form (v ∈ L⊥, L ⊆ ξx). If we iterated this construction,
we will get, in the end, the space of ordered orthogonal decompositions of fibers into lines. This can
be built as a balanced product. Let Fln be the space of “orthogonal flags,” that is, decompositions
of Cn into an ordered sequence of n 1-dimensional subspaces. There is an evident action of U(n)
on this space, and

Fl(ξ) = P ×U(n) Fln

where P ↓ X is the principal U(n) bundle associated to ξ (and a choice of Hermitian metric).
The action of U(n) on Fln is transitive, and the isotropy subgroup of (Ce1, . . . ,Cen) is the

subgroup of diagonal unitary matrices,

Tn = (S1)n ⊆ U(n) ,

so
Fln = U(n)/Tn .

In the universal case, over BU(n),

Fl(ξn) = EU(n)×U(n) (U(n)/Tn) = EU(n)/Tn = BTn

and this is just a product of n copies of CP∞. So we have discovered that

H∗(BU(n)) ↪→ H∗(BTn) = Z[t1, · · · , tn]

where ti is the Euler class of the line bundle pr∗iλ, the pull back of the universal line bundle under
the projection onto the ith factor of CP∞. What is the image?

Well, the symmetric group Σn sits inside the unitary group as matrices with a single 1 in each
column. The maximal torus Tn is sent to itself by conjugation by a permutation matrix, which has
the effect of reordering the diagonal entries. In cohomology, the action permutes the generators.
These permutation matrices also act by conjugation on all of U(n), but there they act trivially on
H∗(BU(n)) since any matrix is connected to the identity matrix by a path in U(n). The consequence
is that the image of H∗(BU(n)) lies in the symmetric invariants:

H∗(BU(n)) ↪→ H∗(BTn)Σn .

These symmetric invariants are well-studied in Algebra! Define the elementary symmetric poly-
nomials σi as the coefficients in the product of t− ti’s:

n∏
i=1

(t− ti) =
n∑
j=0

σjt
n−j

For example,

σ0 = 1 , σ1 = −
n∑
j=1

tj , σn = (−1)n
n∏
j=1

tj .

The theorem from algebra is that the elementary symmetric polynonomials are algebraically inde-
pendent and generate the ring of symmetric invariants –

R[t1, . . . , tn]Σn = R[σ1, . . . , σn]

– over any coefficient ring R.
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If we give each ti a grading of 2, the elementary symmetric polynomials are homogeneous and
|σi| = 2i.

So H∗(BU(n)) embeds into a graded algebra of exactly the same size. This does not yet show
that the embedding is surjective! For each q, we know that Hq(BU(n)) embeds into Hq(BTn) as
a subgroup of the same rank. If L is a free abelian group of finite rank and L′ is a subgroup, the
little exact sequence

0→ Tor1(L/L′,Fp)→ L′ ⊗ Fp → L⊗ Fp

shows that the p-torsion in L/L′ vanishes if L′⊗Fp → L⊗Fp is injective. Now our argument above
actually works for any coefficient ring, so H∗(BU(n);Fp)→ H∗(BTn;Fp) is monic for any prime p.
Because H∗(BU(n)) is torsion free this says that H∗(BU(n)) ⊗ Fp → H∗(BTn) ⊗ Fp is monic for
any prime. The result is that the index of H∗(BU(n)) in H∗(BTn)Σn is prime to p for every prime
number p, and so this injection must also be surjective.

We have proven most of:

Theorem 34.4. The inclusion Tn ↪→ U(n) induces an isomorphism

H∗(BU(n))
∼=−→ H∗(BTn)Σn .

Under this identification, the classes ci constructed in Theorem 2 map to the elementary symmetric
functions.

In the context of Chern classes, the elements ti are called “Chern roots.” The extension
H∗(BU(n)) ↪→ H∗(BTn) adjoins the roots of the Chern polynomial

c(t) = tn + c1t
n−1 + · · ·+ cn

Remark 34.5. Everything we have done admits a version for real vector bundles, with mod 2
coefficients. One point deserves some special attention: the argument we gave for why conjugation
by a permutation induces the identity on H∗(BU(n)) fails because the group O(n) is not path-
connected. However, there is a better and more general argument available.

Lemma 34.6. Let G be any topological group and g ∈ G. The self-map of BG induced by conjuga-
tion by g is homotopic to the identity.

Proof. The proof is an easy exercise using the material from Lecture 21. We regardG as a topological
category with one object. Conjugation induces an endofunctor cg. A natural transformation from
the identity to cg is given by the morphism g:

∗ g //

h
��

∗
cg(h)=ghg−1

��
∗ g // ∗ .

And natural transformations induce homotopies.

Of course the map cg : BG→ BG is not homotopic to the identity through basepoint preserving
homotopies! On π1(BG) = π0(G) it induces conjugation by [g] ∈ π0(G).



35. THE THOM CLASS AND WHITNEY SUM FORMULA 129

35 The Thom class and Whitney sum formula

We now have four perspectives on Chern classes:

1. Axiomatic

2. Grothendieck’s definition in terms of H∗(P(ξ))

3. In terms of Euler classes

4. As elementary symmetric polynomials via the splitting principle

In this lecture we will explain why these are four facets of the same gem, though at the expense
of introducing a new perspective on the Euler class. Developing that perspective lets us introduce
another important construction in topology, the Thom space. We’ll use that to verify that (3)
and (4) agree. Then we’ll prove the Whitney sum formula from this perspective. We’ll take the
identification of Chern classes with symmetric polynomials as the starting point.

Thom space and Thom class

Let ξ : E
p−→ B be a real n-plane bundle. The Thom space is obtained by forming the one-point

compactification of each fiber, and then identifying all the newly adjoined basepoints to a single
point. If B is a compact Hausdorff space, this amounts to the one-point compactification of the
total space E(ξ).

Example 35.1. There is a canonical homeomorphism

Th(λ∗ ↓ RPn−1)→ RPn .

It is given by sending (ϕ ∈ L∗, L ⊆ Rn) to the graph of ϕ in Rn ×R. This map embeds E(λ∗) into
RPn, and misses only the line Ren+1. This establishes RPn as the one-point compactification of
E(λ∗). (It also shows that λ∗ is the normal bundle of the linear embedding RPn−1 ↪→ RPn.)

By choosing a metric we get a different expression for the same space. Let D(ξ) and S(ξ) = ∂D(ξ)
denote the unit disk and unit sphere bundles. The Thom space of ξ is the quotient space

Th(ξ) = D(ξ)/S(ξ) .

Rather than this quotient space, you may prefer to think of the pair (D(ξ),S(ξ)); it is homotopy
equivalent to the pair (E(ξ), E(ξ)\Z), where Z is the image of the zero-section.

Note that Th(0) = B/∅ = B+, the base with a disjoint basepoint adjoined. The Thom space
of the n-plane bundle over a point is Dn/∂Dn = Sn.

An important point about the Thom space construction is its behavior on the product of two
bundles, say ξ and η. Since

∂(Dp ×Dq) = (∂Dp ×Dq) ∪ (Dp × ∂Dq) ,

we find
Th(ξ × η) =

D(ξ × η)

∂D(ξ × η)
=

D(ξ)× D(η)

S(ξ)× D(η) ∪ D(ξ)× S(η)
= Th(ξ) ∧ Th(η) .

In particular, if η is the n-plane bundle over a point, ξ × η = ξ ⊕ nε and

Th(ξ ⊕ nε) = Th(ξ) ∧ Sn = Σn Th(ξ) .
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In general, the Thom space is a “twisted n-fold suspension.”
The Thom space construction is natural for bundle maps: Given f : B′ → B, covered by a

bundle map ξ′ → ξ (so that ξ′∼= f∗ξ) we get a canonical pointed map

f : Th(ξ′)→ Th(ξ) .

This construction can be used to define a relative product in the cohomology of the Thom space,
in the following way. Notice that the bundle 0 × ξ over B × B is just the pullback of ξ under
pr2 : B×B → B. The diagonal map ∆ : B → B×B satisfies pr2 ◦∆ = 1B, and is therefore covered
by a bundle map ξ → 0× ξ, which then induces a twisted diagonal map

Th(ξ)→ Th(0) ∧ Th(ξ) = B+ ∧ Th(ξ) .

This in turn induces a “relative cup product” in cohomology:

∪ : H∗(B)⊗H∗(Th(ξ))→ H
∗
(Th(0) ∧ Th(ξ))→ H

∗
(Th(ξ)) .

Since the diagonal map is associative and unital, this map defines on H∗(Th(ξ)) the structure of a
module over the graded ring H∗(B).

Here is the essential fact about the Thom space.

Proposition 35.2 (Thom isomorphism theorem). Let R be a commutative ring and let ξ be an
R-oriented real n-plane bundle over B. There is a unique class U ∈ Hn

(Th(ξ);R) that restricts on
each fiber to the dual of the orientation class, and the map

− ∪ U : H∗(B)→ H
∗
(Th(ξ))

is an isomorphism.

Proof. The proof is very simple, if you grant yet another relative form of the Serre spectral sequence.
This time I want to have a fibration p : E → B – say a fiber bundle – together with a subbundle
p0 : E0 → B. Then there is spectral sequence

Es,t2 = Hs(B;Ht(p−1(−), p−1
0 (−))) =⇒

s
Hs+t(E,E0)

We will apply this to the fiber bundle pair (D(ξ),S(ξ)). The fiber pair is then (Dn, Sn−1), which
has cohomology in just one dimension! This spectral sequence has just one row: the nth row. It
collapses at E2, there are no extension problems, and we get a canonical isomorphism

Hs(B;Hn(p−1(−), p−1
0 (−)))→ Hs+n(D(ξ),S(ξ)) = H

s+n
(Th(ξ)) .

The assumed orientation identifies the local coefficient system with the constant system R. The
generator of E0,n

2 survives to a class U that restricts as stated, and the multiplicative structure of
the spectral sequence implies that this is an isomorphism of modules over H∗(B).

Thom and Euler

We now use this construction to define a new class in Hn(B) associated to the oriented n-plane
bundle ξ, by means of the composite

π : B � D(ξ)→ Th(ξ) .

The first map is the zero-section, homotopy inverse to the projection map. The second one is the
collapse map. The Thom class U ∈ Hn

(Th(ξ)) pulls back under this map to a class in Hn
(B).

This class is at least up to sign the Euler class as we defined it earlier:
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Lemma 35.3. This class coincides up to sign with the Euler class: π∗U = ±e.

It is easy to verify at least that they generate the same subgroup (which proves that they
are the same with coefficients in F2). Work in the universal case. As a notational choice, we
will work over Z, so we are looking at ξn over BSO(n). We’ve seen that the total space of its
sphere bundle is BSO(n− 1). The Serre spectral sequence for this fibration shows that the kernel
of the projection map p∗ : Hn(BSO(n − 1)) → Hn(BSO(n)) is the image of the transgression
Hn−1(Sn−1)→ Hn(BSO(n− 1)). So the kernel is cyclic and generated by the Euler class. On the
other hand, we have the cofibration sequence

BSO(n− 1)→ BSO(n)
π−→MSO(n)

where we are using Thom’s notation MSO(n) = Th(ξn). The Thom class U ∈ Hn(MSO(n)) gen-
erates this group (by the Thom isomorphism theorem) so its image in Hn(BSO(n)) also generates
ker(Hn(BSO(n))→ Hn(BSO(n− 1))).

We will see, as a consequence of a computation ofH∗(BSO(n); Z[1/2]), that this kernel is infinite
cyclic if n is even, so then the generator is at least well defined up to sign. For homework you will
show that 2e = 0 if n is even, so the generator is then unique.

But in fact, it’s better just to take π∗U as the definition of the Euler class. With that definition,
we get a new construction of the Gysin sequence: It is the long exact cohomology sequence of the
pair (Th(ξ), B), aided by the Thom isomorphism:

· · · // Hs−1(B)
p∗ // Hs−1(E)

δ //

p∗

&&

H
s
(Th(ξ))

π∗ // Hs(B)
p∗ // Hs(E) // · · ·

Hs−n(B) .

−∪U∼=

OO
·e

88

This is a long exact sequence of modules overH∗(B). This gives a different perspective on integration
along the fiber:

(p∗x) ∪ U = δx .

We’ll just use this definition going forward. Notice that with this definition, the Euler class
is multiplicative for Whitney sum. We should be careful about orientations. The direct sum of
oriented vector spaces V and W has an orientation given by putting a positive ordered basis for V
first and follow it by a positive ordered basis for W . This convention orients the Whitney sum of
two vector bundles over a space.

Proposition 35.4. Let ξ and η be oriented vector bundles over spaces X and Y .

e(ξ × η) = e(ξ)× e(η) .

Proof. First, Uξ ∧ Uη ∈ H
p+q

(Th(ξ) ∧ Th(η)) is a Thom class for ξ × η, since it restricts on fiber
pairs to the direct sum orientation. Then the collapse maps are compatible:

Th(ξ × η)
= // Th(ξ) ∧ Th(η)

(X × Y )+
= //

πX×Y

OO

X+ ∧ Y+

πX∧πY

OO
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commutes, and in cohomology we chase

Uξ ∧ Uη � //
_

��

Uξ×η_

��
e(ξ)× e(η) � // e(ξ × η) .

If we take X = Y here and pull back along the diagonal, ξ × η goes to the Whitney sum and
e(ξ)× e(η) goes to the cup-product:

e(ξ ⊕ η) = e(ξ) · e(η) .

Euler class and symmetric polynomials

One of our descriptions of the Chern classes was this: If an n-plane bundle ξ splits ζ ⊕ (n − k)ε,
then ck(ξ) = (−1)ke(ζ). Let’s check that this holds for the classes defined by means of elementary
symmetric functions. It might be clearest if we look at the universal example, where the splitting
map f : BTn → BU(n) pulls ξn back to the direct sum of line bundles λ1 ⊕ · · · ⊕ λn and induces
an isomorphism f∗ : H∗(BU(n)) → H∗(BTn)Σn . Let’s do the case k = n first, so I want to show
that (−1)ne(ξn) maps to σn. Using multiplicativity of the Euler class,

f∗e(ξn) = e(λ1 ⊕ · · · ⊕ λn) = e(λ1) · · · e(λn) .

With the notation ti = e(λi), this shows that

f∗((−1)ne(ξn)) = (−1)nt1 · · · tn = σn .

For smaller k, we’ll use the fact that the maximal tori T k ⊆ U(k) are compatible as k increases.
This gives the commutative diagram

H2k(BU(n)) //

��

H2k(BTn)Σn

��
H2k(BU(k)) // H2k(BT k)Σk

The elementary symmetric polynomial definition of ck specifies that it maps to σk along the top
arrow. We want to see that this class maps to (−1)ke(ξk) ∈ H2k(BU(k)). Well, by the k = n case
that we just did, we know that that class maps to σk along the bottom. So what remains is to check
that σk ∈ H2k(BTn)Σn maps to the class of the same name in H2k(BT k)Σk .

To keep things straight, let’s write σ(n)
k for the first class and σ(k)

k for the second. The restriction
H∗(BTn)→ H∗(BT k) sends ti to ti if i ≤ k and to 0 if i > k. So∑n

i=0 σ
(n)
i tn−i =

∏n
j=1(t− tj)

_

��(∑k
i=0 σ

(k)
i tk−i

)
tn−k =

(∏k
j=1(t− tj)

)
tn−k

and comparing coefficients we see that σ(n)
k 7→ σ

(k)
k .
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The Whitney sum formula

By our discussion above, the Whitney sum formula of Theorem 33.3 reduces to proving the following
identity:

σ
(p+q)
k =

∑
i+j=k

σ
(p)
i · σ

(q)
j (5.1)

inside Z[t1, . . . , tp, tp+1, . . . , tp+q]. Here, σ
(p)
i is thought of as a polynomial in t1, . . . , tp, while σ

(q)
j is

thought of as a polynomial in tp+1, . . . , tp+q. To derive Equation (5.1), simply compare coefficients
in the following:

p+q∑
k=0

σ
(p+q)
k tp+q−k =

p+q∏
i=1

(t− ti)

=

p∏
i=1

(x− ti) ·
p+q∏
j=p+1

(t− tj)

=

(
p∑
i=0

σ
(p)
i tp−i

) q∑
j=0

σ
(p)
j tq−j


=

p+q∑
k=0

 ∑
i+j=k

σ
(p)
i σ

(q)
j

 tp+q−k .

Hassler Whitney once called this his hardest theorem. Apparently he didn’t have the splitting
principle working for him.

36 Closing the Chern circle, and Pontryagin classes

Back to Grothendieck

Now we’ll use the splitting principle to show that the Chern classes (defined as corresponding to
the elementary symmetric polynomials) participate in a monic polynomial satisfied by the Euler
class of the tautologous bundle over the projectivization of a vector bundle. This will complete the
identification of the various versions of Chern classes.

So we have an n-plane bundle ξ over B, and consider the projectivization π : P(ξ) → B. We
observed in the last lecture that the tautologous bundle λ embeds (canonically) into the pullback
π∗ξ. Let λ denote the complex conjugate or inverse line bundle, so that λ ⊗ λ = ε. Tensoring π∗ξ
with λ thus results in a bundle with a trivial summand; that is, with a nowhere vanishing section.
Its Euler class therefore vanishes. We will compute what that Euler class is, using the splitting
principle.

The splitting principle allows us to assume that ξ is a sum of line bundles, say ξ = λ1⊕· · ·⊕λn.
Then

λ⊗ π∗ξ =
n⊕
i=1

λ⊗ π∗λi .

By multiplicativity of the Euler class, we find

e(λ⊗ π∗ξ) =

n∏
i=1

e(λ⊗ π∗λi) .
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Write t for e(λ) ∈ H2(P(ξ)), so that e(λ) = −t. Also write ti = e(λi), so that

e(λ⊗ π∗λi) = π∗ti − t

and

e(λ⊗ π∗ξ) =

n∏
i=1

(π∗ti − t) = (−1)n
n∑
j=0

(π∗cj(ξ))t
n−j .

Since e(λ⊗ π∗ξ) = 0, this shows that our new Chern classes satisfy the identity Grothendieck used
to define them. Since these coefficients were unique, this identifies Grothendieck’s definition with
the others we have introduced.

Stiefel-Whitney classes

Same story! Well, almost. We don’t have the even/odd argument working for us anymore. We
want to know that the Euler class is a non-zero-divisor. We do have the splitting principle, which
assures us that

f∗ : H ∗ (BO(n);F2) ↪→ H∗(BCn2 ;F2)Σn .

By multiplicativity of the Euler class, it maps to t1 · · · tn ∈ Hn(BCn2 ;F2), which is nonzero in this
integral domain and so is a non-zero-divisor. The result:

Proposition 36.1. H∗(BO(n);F2) = F2[w1, . . . , wn].

While we are talking about Stiefel-Whitney classes, let me point out that w1 ∈ H1(B;F2) is
precisely the obstruction to orientability of ξ : E ↓ B. If B is path-connected, it can be identified
with the homomorphism π1(B) → C2 that takes on the value −1 on σ if the orientation of the
fiber is reversed under the homotopy endomorphism of the fiber given by σ. You can check this
in the universal case: The class w1 ∈ H1(BO(n);F2) is represented by a map BO(n) → K(F2, 1).
This map is the bottom Postnikov stage of BO(n), and its homotopy fiber is the simply connected
Whitehead cover of BO(n). We know what that is, since SO(n) ↪→ O(n) is the connected component
of the identity (and is the kernel of det : O(n)→ C2).

The map BSO(n)→ BO(n) is (at least homotopy theoretically) a double cover; the fiber is S0,
so we are entitled to a Gysin sequence. The Euler class of this spherical fibration is exactly w1, a
non-zero-divisor, so we discover the short exact sequence

0→ H∗(BO(n);F2)
e·−→ H∗(BO(n);F2)→ H∗(BSO(n);F2)→ 0 .

This shows that H∗(BSO(n);F2) is the polynomial algebra on the images of w2, . . . , wn:

H∗(BSO(n);F2) = F2[w2, . . . , wn] .

It often happens that one cares about only the “stable” equivalence class of a vector bundle.
This leads one to consider the direct limit or union

BO = lim
n→∞

BO(n) .

Its cohomology is given by
H∗(BO) = F2[w1, w2, . . .], .
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Of course the limit of the BSO(n)’s is written BSO. It is the simply-connected cover of BO. It’s
interesting to contemplate the rest of the Whitehead tower of BO. For a while the spaces involved
have names:

BString

��
BSpin

��

p1/2 // K(Z, 4)

BSO

��

w2 // K(Z/2Z, 2)

X

;;

DD

HH

ξ // BO
w1 // K(Z/2Z, 1)

Pontryagin classes

Real vector bundles have integral characteristic classes too! They were studied by Lev Pontryagin
(1908–1988, Steklov Institute, blinded in an accident at age 14). The idea is to use Chern classes
to define such things. Given a real vector bundle ξ we can tensor up to the complex vector bundle
C⊗R ξ, and study its Chern classes.

Complex vector bundles arising in this way have some additional structure. Any complex vector
bundle ζ : E ↓ B has a “complex conjugate” vector bundle ζ with the same underlying real vector
bundle but with complex structure defined by letting z ∈ C act on ζ the way z acted on ζ. We’ve
already seen this construction for line bundles, when λ⊗ λ = ε.

The complexification C⊗R ξ of a real vector bundle comes equipped with an isomorphism

C⊗R ξ∼=C⊗R ξ

given by z ⊗ v 7→ z ⊗ v. We discover that

ci(C⊗R ξ) = ci(C⊗R ξ) ,

so we should ask: What are the Chern classes of the complex conjugate of a complex vector bundle?

Lemma 36.2. ci(ξ) = (−1)ici(ξ) .

Proof. Exercise; use any one of the perspectives on Chern classes that we have developed.

This puts no restriction on ci(C ⊗R ξ) for i even, but forces 2ci(C ⊗R ξ) = 0 for i odd. The
2-torsion will get in the way, so let’s work with coefficients in a ring R in which 2 is invertible – a
Z[1/2]-algebra, such as Z[1/2] itself, or Fp for p 6= 2. We already have Stiefel-Whitney classes with
mod 2 coefficients, so this is not so bad.

Definition 36.3. The kth Pontryagin class of a real vector bundle ξ is

pk(ξ) = (−1)kc2k(C⊗R ξ) ∈ H4k(X;R) .

Of course pk(ξ) = 0 if k > n/2, since ξ ⊗ C is of complex dimension n. The strange sign does
not interfere with the Whitney sum formula:

pk(ξ ⊕ η) = (−1)k
∑
i+j=k

c2i(C⊗R ξ)c2j(C⊗R η) =
∑
i+j=k

pi(ξ)pj(η)
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since the odd terms contribute only 2-torsion, which we have eliminated by working over a Z[1/2]-
algebra.

The Pontryagin classes are defined for vector bundles, orientable or not. They are independent
of the orientation if there is one. But an oriented 2k-plane bundle over B has an Euler class
e(ξ) ∈ H2k(B), and we might ask how it is related to the Pontryagin classes. The sign is there in
the definition of the Pontryagin classes so that the following important relation is satisfied.

Lemma 36.4. For any oriented 2k-plane bundle, pk(ξ) = e(ξ)2.

Proof. We need to be careful about orientations. We have the isomorphism of real vector bundles

ξ ⊕ ξ
∼=−→ C⊗R ξ ,

defined (v, w) 7→ v + iw. We have established an orientation on C ⊗R ξ. But suppose that ξ itself
came equipped with an orientation. This puts an orientation on the direct sum. How are the two
orientations related to each other? If e1, . . . , en is a positive basis for an ordered vector space V ,
then we are comparing the ordered bases

e1, e2, . . . , en, ie1, ie2, . . . , ien for V ⊕ V and
e1, ie1, e2, ie2, . . . , en, ien for C⊗R V .

Relating them requires

(n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2

transpositions, so they give the same orientation if this number is even and opposite orientations if
it is odd.

Now we can compute:

pk(ξ) = (−1)kc2k(C⊗R ξ) = (−1)ke(C⊗R ξ)

= (−1)k(−1)2k(2k−1)/2e(ξ ⊕ ξ) = e(ξ)2

since 2k(2k − 1)/2 ≡ k mod 2.

We can now systematically compute the cohomology of BSO(n) away from 2 by induction on
n using the Gysin sequence. Here’s the result.

Theorem 36.5. With coefficients in any Z[1/2]-algebra, the cohomology of BSO(n) is polynomial
for all n. When n = 2k + 1, the generators are p1, . . . , pk. When n = 2k, the generators are
p1, . . . , pk−1, en. The maps H∗(BSO(n))→ H∗(BSO(n− 1) take Pontryagin classes to themselves,
except that H4k(BSO(2k + 1))→ H4k(BSO(2k)) sends pk to e2

2k.

Here’s a table of the algebra generators, with the squares of the Euler classes added in to indicate
how pk restricts.

2 4 6 8 10 12
H∗(BSO(2)) e2 (e2

2)
H∗(BSO(3)) p1

H∗(BSO(4)) p1, e4 (e2
4)

H∗(BSO(5)) p1 p2

H∗(BSO(6)) p1 e6 p2 (e2
6)

H∗(BSO(7)) p1 p2 p3
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We can then compute H∗(BO(n);R) for R a Z[1/2]-algebra by using the fiber sequence

BSO(n)→ BO(n)→ RP∞ .

The spectral sequence has Es,t2 = Hs(RP∞;Ht(BSO(n))). There are local coefficients here, but
with any local coefficients the higher cohomology of RP∞ is killed by 2 and so vanishes for us. As
a result the edge homomorphism

H∗(BO(n);R)→ H∗(BSO(n);R)C2

is an isomorphism. The generator of π1(RP∞) tracks the effect of reversing orientations: it fixes
the Pontryagin classes and negates the Euler classes. The result is that

H∗(BO(2k);R)
∼=←− H∗(BO(2k + 1);R)

∼=−→ H∗(BSO(2k + 1);R)

and all are given by
R[p1, . . . , pk] .

37 Steenrod operations

We worked hard to show that mod 2 cohomology takes values not just in graded F2-vector spaces,
but actually in graded commutative F2-algebras. This additional structure has proven extremely
useful. What other natural structure is there on mod 2 cohomology? Both the sum and the cup
product are natural operations on two variables. The identity element 1 ∈ H0 is in a sense a natural
operation on zero variables (and is the only nonzero natural element in mod 2 cohomology). This
invites the question: are there nontrivial natural operations in one variable? Some of course are
generated from the product: x 7→ xr, for example. When r is a power of 2, this is an additive
operation. We know one other additive operation as well: the Bockstein,

β : Hn(X)→ Hn+1(X) .

(All our coefficients will be in F2 in this lecture.) This is obtained as the boundary map in the long
exact sequence associated to the short exact sequence 0→ C2 → C4 → C2 → 0.

Our goal in this lecture is to establish the following theorem, due to Norman Steenrod (1910–
1971, working at Princeton).

Theorem 37.1. For any n ≥ 0, there is a unique family of additive natural transformations

Sqk : Hn → Hn+k , k ≥ 0 ,

such that
Sq0x = x , Sqk(x) = x2 if k = |x| , Sqkx = 0 if k > |x| ,

and the “Cartan formula”
Sqk(xy) =

∑
i+j=k

(Sqix)(Sqjy)

is satisfied.
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It will transpire that Sq1 = β.
By the Yoneda lemma, natural transformations Hn → Hn+k are classified by Hn+k(Kn), where

we write
Kn = K(F2, n) .

We won’t try to compute the whole of H∗(Kn), at least not right away, though eventually it will
turn out that the entire cohomology of the mod 2 Eilenberg Mac Lane spaces is generated as an
algebra by iterates of the operations we will construct. But at least we can notice right off that

H i(Kn) = 0 for 0 < i < n

and
Hn(Kn) = F2 for n > 0

by the Hurewicz theorem, so the only nonzero operation on n-dimensional classes that lowers degrees
is the one sending every x to 1 ∈ H0.

The starting point is the failure of the map cochain cross product

S∗(X)⊗ S∗(X)→ S∗(X ×X)

– or of any natural chain map inducing the cross product in cohomology – to be C2-equivariant.
This failure reflects itself geometrically using the following construction.

Definition 37.2. The extended square of a space X is the balanced product

S∞ ×C2 X
2 .

Here C2 acts antipodally on S∞, and swaps the factors in X2.

This is the total space of the bundle with fiber X2 associated to the universal principal C2

bundle S∞ ↓ RP∞. We will study it by means of the Serre spectral sequence.
Actually, it will be important to consider a pointed refinement of this. So suppose given a

basepoint ∗ ∈ X. It determines the subset

X ∨X ⊆ X ×X

consisting of the “axes” in the product. The pair (X2, X ∨ X) is equivariant, and determines a
bundle pair

S∞ ×C2 (X2, X ∨X) ↓ RP∞ .

A point in S∞ determines a fiber inclusion

i : (X2, X ∨X)→ S∞ ×C2 (X2, X ∨X) .

We’ll be working with the cohomology Künneth theorem, so let’s restrict ourselves to spaces
whose mod 2 cohomology is of finite type. Serre’s mod C theory guarantees that Kn is in this
category, and the Künneth theorem guarantees that the category is closed under products.

Proposition 37.3. There is a unique natural transformation

P : H
n
(X)→ H2n(S∞ ×C2 (X2, X ∨X))

such that
i∗P (x) = x⊗2 ∈ H2n(X2, X ∨X) .
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Proof. We’ll study the associated Serre spectral sequence,

Hs(RP∞;Ht(X2, X ∨X)) =⇒
s
Hs+t(S∞ ×C2 (X2, X ∨X)) .

While the chain-level cross product isn’t equivariant, the cohomology cross product is: The cross
relative product map

H
∗
(X)⊗H∗(X)→ H∗(X2, X ∨X)

is equivariant, if we let C2 act by exchanging factors on the left and on the right. This map is
an isomorphism if H∗(X) is of finite type, and then the F2[C2]-module featuring as coefficients in
the spectral sequence can be written as H∗(X)⊗2. It’s interesting and not hard to analyze this
representation of C2, but we do not need to know about that to construct Steenrod operations. All
we need to know is that any x ∈ Hn

(X) determines an invariant class x⊗ x ∈ Hn
(X)⊗2.

Now comes the trick: It suffices to consider the universal example, ιn ∈ H
n
(Kn). Since

H
i
(Kn) = 0 for i < n, the entire E2 term of

Hs(RP∞;Ht(K2
n,Kn ∨Kn)) =⇒ H∗(S∞ ×C2 (K2

n,Kn ∨Kn))

lies in vertical dimensions t ≥ 2n.
So the group

E0,2n
2 = H2n(K2

n,Kn ∨Kn) = 〈ιn ⊗ ιn〉

survives to E0,2n
∞ . The element ιn ⊗ ιn lifts to an element of H2n(S∞ ×C2 (K2

n,Kn ∨Kn)), and this
lift is unique because all the lower filtration degrees vanish. This lifted class is Pιn. By definition
(and the edge homomorphism story) it restricts on (K2

n,Kn ∨Kn) to ιn ⊗ ιn.

The resulting natural transformation P : Hn(X) → Hn(S∞ ×C2 (X2, X ∨ X)) is the “total
square.” It’s a prime example of a “power operation.”

Now we “internalize,” by pulling back under the diagonal map. The “commutativity” of the
diagonal map becomes important:

∆ : X → X ×X

is equivariant, where C2 acts trivially on X and by swapping the factors in X × X. It induces a
map

S∞ ×C2 (X, ∗)→ S∞ ×C2 (X2, X ∨X) .

But
S∞ ×C2 (X, ∗) = RP∞ × (X, ∗)

so we have
δ : RP∞ × (X, ∗)→ S∞ ×C2 (X2, X ∨X) .

Pick x ∈ Hn
(X) and consider the pullback δ∗P (x). By the Künneth theorem,

H∗(RP∞ × (X, ∗)) = H∗(RP∞)⊗H∗(X)

so δ∗P (x) has an expression as a polynomial in the generator t ∈ H1(RP∞). The coefficients are
the Steenrod squares:

δ∗P (x) = (Sqnx) + (Sqn−1x)t+ · · ·+ (Sq0x)tn Sqix ∈ Hn+i
(X) .

Since H i
(Kn) = 0 for i < n, there are no natural transformations that decrease degree: so there are

no negatively indexed squares; the sum terminates as indicated.
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Any operation on H∗ induces one on H∗ by using the isomorphism

H∗(X) = H
∗
(X+) .

Note that (X+)2 = X2 t (X+ ∨X+) so the total square specializes to a natural transformation

P : Hn(X)→ H2n(S∞ ×C2 X
2) .

Proposition 37.4. Sqn : Hn → H2n is the squaring map x 7→ x2.

Proof. This is the coefficient of 1 ∈ H0(RP∞), so we should pick a basepoint for RP∞, and watch
the evolution of the class Px in the cohomology of the commutative diagram

∗ ×X

��

∆ // S0 ×C2 X
2 = X2

��

1⊗ Sqnx = x2 x⊗ x�oo

RP∞ ×X δ // S∞ ×C2 X
2 1⊗ Sqnx+ · · ·

_

OO

Px .�oo
_

OO

Proposition 37.5. Sq1 = β.

Proof. Acting on Hq for q ≥ 1, both Sq1 and β are nonzero. (Exercise: Provide examples.) We
claim that dimHn+1(Kn) = 1 for n ≥ 1, so the two must coincide. Since K1 = RP∞, we know that
case. For the inductive step, use the Serre exact sequence on the fibration sequence

Kn−1 → PKn → Kn .

How about Sq0? Since Hn
(Kn) = F2, there are only two natural transformations Hn → H

n: the
identity and the zero map. The Steenrod operation Sq0 is one or the other; which is it? In a sense
the operations Sqk get more sophisticated as k decreases; identifying Sq0 is tricky. In fact there are
many other contexts in which Steenrod operations can be defined, and in a sense the topological
context is characterized by Sq0 = 1. We’ll study the simplest case first.

Proposition 37.6. Sq0 = 1 on H1.

Proof. It suffices to come up with a single example of a space with a nonzero class x ∈ H1
(X) such

that Sq0x = x. Our example will be S1 with the generator x ∈ H1
(S1).

It suffices to look at the subspace of the extended square in which S∞ is replaced by S1. Passing
to the quotient space of the pair S1 ×C2 (S1 × S1, S1 ∨ S1), we arrive at the pointed space

S1 ×C2 (S1 ∧ S1)

S1 ×C2 ∗

in which C2 exchanges the two factors of S1. The smash product may be identified with the one-
point compactification of R2, with C2 acting linearly by permuting the two basis vectors. This
representation of C2 is just 1⊕ σ, the sum of the trivial 1-dimensional representation with the sign
representation.

We have the double cover S1 ↓ RP 1. This is a principal C2-bundle, and the space we are looking
at is exactly the Thom space of the vector bundle over RP 1 associated to this principal C2 bundle
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and the representation 1⊕σ: it is Th(ε⊕λ) where λ is the tautological line bundle over RP 1. Thus
we arrive at

S1 ×C2 (S1 ∧ S1)

S1 ×C2 ∗
= ΣRP 2 .

The fiber inclusion into the extended square corresponds under this identification with the fiber
inclusion in the Thom space. So the nontrivial class in H2(ΣRP 2) is the Thom class; it restricts to
x⊗ x in the fiber, and hence the Thom class is the total square Px.

The diagonal inclusion
S1 ×C2 S

1

S1 ×C2 ∗
→ S1 ×C2 (S1 ∧ S1)

S1 ×C2 ∗

corresponds to including the fixed point subspace into the representation 1 ⊕ σ. This produces a
bundle map ε→ ε⊕ λ covering the inclusion RP 1 ↪→ RP 2. We obtain a map of Thom spaces

ΣRP 1
+ → ΣRP 2

that (by naturality of the Thom isomorphism) is an isomorphism in dimension 2. This is generated
by the class t⊗ x, and we conclude that Sq0x = x.

The Cartan formula is quite easy to verify as well, but we won’t carry that out here. Notice
though that it has an important corollary.

Proposition 37.7. The Steenrod operations are stable: For all n and q the diagram

H
q
(X)

Sqn //

σ
��

H
q+n

(X)

σ
��

H
q+1

(ΣX)
Sqn // H

q+n+1
(ΣX)

commutes.

Proof. The suspension isomorphism is induced by the relative cross product

∧ : H
1
(S1)⊗Hq

(X)→ H
q+1

(ΣX) .

The Cartan formula together with the fact that Sq0 = 1 on H1 gives the result.

.

Corollary 37.8. Sq0 is the identity on Hq for any q.

Proof. We just check this on ιq ∈ Hq(Kq). The map K1×Kq−1 → Kq representing the cup product
sends ι1 ⊗ ιq−1 to ιq, and the result then follows by induction and the Cartan formula.

Corollary 37.9. Sqn : H
q → H

q+n is additive.

This is surprising, since the total power operation P is not additive.
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Proof. Any stable operation Kq → Kq+n is additive: Being stable means that

Kq

'
��

Sqn // Kq+n

'
��

ΩkKq+k
ΩkSqn // Kq+k+n

commutes up to homotopy. TheH-space structure ofKq as a loop space is the structure representing
the sum in Hq, so Sqn : Kq → Kq+n induces a homomorphism in [X,−].

The Steenrod algebra A∗ is the algebra of cohomology operations generated by the Steenrod
operations. This is a noncommutative graded F2-algebra. It is not a free algebra: the Steenrod op-
erations satisfy relations, starting with Sq1Sq1 = 0. In fact, all relations among them are determined
by two facts:

• Sq2n−1Sqn = 0 and

• The assignment Sqn 7→ Sqn−1 extends to a derivation on A∗.

An explicit generating family of relations is given by the Adem relations

SqiSqj =
∑
k

(
j − k − 1

i− 2k

)
Sqi+j−kSqk , i < 2j .

(José Adem, 1921–1991, was a student of Steenrod and a founding father of algebraic topology
in Mexico.) This relation looks quadratic, and almost is, but fails to be whenever the binomial
coefficient with k = 0 in the summation is nonzero. If n is not a power of 2, let j be the largest
power of 2 less than n and i = n− j. Then the binomial coefficient

(
j−1
i

)
is nonzero, so the Adem

relation shows that Sqn is decomposable: a sum of products of positive-dimensional elements. From
this we learn:

Proposition 37.10 (Adem). A∗ is generated by Sq1,Sq2,Sq4,Sq8, . . ..

This leads to information about the “Hopf invariant.” Among its many interpretations, the Hopf
invariant asks how far the sequence of 3-cell complexes RP 2, CP 2, HP 2, can be extended. The
“octonions” O provide us with one more, OP 2. Adem’s theorem puts a first restriction on such
spaces:

Corollary 37.11. Suppose there is a space X such that H∗(X) = F2[x]/x3. Then |x| is a power of
2.

Proof. Let n = |x|. Then Sqnx = x2 6= 0. But if n is not a power of 2, this operation factors
through groups between dimension n and 2n.

This theorem was improved by Frank Adams to: |x| = 1, 2, 4 or 8; there are no examples beyond
the classical ones. (John Frank Adams (1930–1989) was a key figure in the development of twentieth
century homotopy theory, Lowndean Professor at Cambridge University.)
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38 Cobordism

René Thom [41] (1923–2002), IHES, discovered how to use all this machinery to give a classification
of closed manifolds, which, while crude, is valid in all dimensions. His equivalence relation was
cobordism (or “bordism” – opinions vary):

Definition 38.1. Let M and N be two closed smooth n-manifolds. A cobordism between them is
an (n+ 1)-manifold-with-boundary W together with a diffeomorphism

∂W ∼=M tN .

If there is a cobordism, M and N are said to be “cobordant.”

If M and N are diffeomorphic, we may use W = M × I along with the diffeomorphism at one
end to see that they are cobordant. Cobordism is an equivalence relation on the class of closed
n-manifolds. Disjoint union endows the set (why “set”?)

Nn = ΩO
n

of cobordism classes of n-manifolds with the structure of a commutative monoid. In fact it is a
vector space over F2, since the same cylinder can be regarded as a null-bordism of M tM . The
product of manifold actually renders the collection of bordism groups a graded commutative algebra.
Thom proved:

Theorem 38.2 (Thom). N∗ = F2[xi : i+ 1 is positive and not a power of 2 ] , where |xi| = i.

We will sketch his proof of this amazing classification theorem over the next few lectures. (Thom
actually only proved the additive statement. Bob Stong’s notes [38] provide an excellent secondary
source.)

Thom also addressed a question formulated by Norman Steenrod – but this question must have
been in Poincaré’s mind much earlier. There are two competing notions of an n-cycle: the singular
one we have been using (or the equivalent but even more combinatorial version involving simplicial
complexes), and the notion of the fundamental cycle of a closed n-manifold. Are they equivalent?
Here’s Steenrod’s formulation of this question. Given an n-dimensional mod 2 homology class x in
a space X, is there a closed n-manifold M and a continuous map f : M → X such that f∗[M ] = x?

This question has an obvious integral variant as well, in which we demand that the manifold M
is oriented.

Theorem 38.3 (Thom [41]). The answer to these questions are: “Yes” in the unoriented case and
“No” in the oriented case.

The Pontryagin-Thom collapse

A smooth map f : M → N of manifolds is an immersion if it induces a monomorphism on all
tangent spaces. One then has an embedding of vector bundles over M , df : τM ↪→ f∗τN . The
quotient bundle is the normal bundle of f , νf . If we equip τN with a metric, we receive a metric on
f∗τN and can identify νf with the orthogonal complement of τM in f∗τN :

τM ⊕ νf ∼= f∗τN .

Suppose thatM is compact. An embedding f : M → N is an injective immersion: an immersion
without double points. In that case, the tubular neighborhood theorem (see [4, p. 93], for example)
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asserts that the subspace f(M) ⊆ N admits a “regular” neighborhood that is equipped with a
diffeomorphism rel M to the normal bundle νf . This regular neighborhood is moreover unique up
to diffeomorphism rel M . In view of this identification we will denote the regular neighborhood by
E(ν).

This observation provides a contravariant relationship between M and N : collapse the comple-
ment of E(ν) to a point. This provides a map

c : N+ → Th(ν)

from the one-point compactification of N to the Thom space of the normal bundle. This is the
Pontryagin-Thom collapse. It’s a special case of the fact that one-point compactification provides
a contravariant functor on the category of locally compact Hausdorff spaces and open inclusions.

When N = Rn+k, this construction associates to an embedded n-manifold j : M ↪→ Rn+k a
map Sn+k → Th(νj). If we vary the embedding through an isotopy (a smooth homotopy through
embeddings) and vary the tubular neighborhood, the resulting maps vary through a homotopy.

Now comes Thom’s observation: the normal bundle is classified by a map M → BO(k), which
induces a map on the level of Thom spaces. By composing, we get a map

Sn+k → Th(νj)→ Th(ξk) = MO(k) .

This provides a map from the set of isotopy classes of embeddings of n-manifolds into Rn+k to the
homotopy group πn+k(MO(k)). Separated disjoint unions get sent to the sum in the homotopy
group. The empty manifold gets sent to zero.

But homotopy corresponds to a still broader equivalence relation on embedded n-manifolds.
Given M0 and M1, both embedded in Rn+k, an ambient cobordism between them is a manifold
with boundary, W , embedded in Rn+k × I, meeting Rn+k × 0 and Rn+k × 1 transversely in M0

(along Rn+k × 0) and M1 (along Rn+k × 1). Isotopies provide cobordisms, but the cobordism could
have some more complicated topology as well, and the ends of a cobordism do not have to be
even homotopy equivalent. It’s not hard to see that cobordisms produce homotopies. Here’s the
geometric content of Thom’s work.

Theorem 38.4 (Thom). The Pontryagin-Thom collapse map from the set of ambient cobordism
classes of closed n-manifolds in Rn+k to the corresponding homotopy class in πn+k(MO(k)) is
bijective.

For example, MO(1) = RP∞, so π2(MO(1)) = 0: a union of i circles embedded in R2 can be
written as the boundary of a 2-sphere with i discs removed.

The inverse map is just as interesting. Start with a map

f : Sn+k →MO(k) .

Compress it through an approximation,

g : Sn+k → Th(ξq,k ↓ Grk(Rq)) .

Approximate this by a nearby (and hence homotopic) map that is smooth on the pre-image of
E(ξq,k), and deform it further so that it meets the image Z of the zero section transversely. Then
the implicit function theorem guarantees that the preimage g−1(Z) is a submanifold M ↪→ Sn+k.
The zero section has codimension k in E(ξq,k), so M is an n-manifold.

This construction is pretty clearly inverse to the Pontryagin-Thom collapse. The whole story
generalizes to allow structure on the normal bundle: for example an orientation or a complex
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structure or a trivialization. The key observation is that the normal bundle of the zero section
in the Thom space of an appropriate manifold approximation of the relevant universal bundle can
be identified with the restriction of the universal bundle and so inherits the same structure. The
relevant homotopy groups are then πn+k(MSO(k)) or πn+k(MU(k/2)) in the first two cases. Giving
a trivialization of a vector bundle is the same thing as giving an isomorphism with the pullback of
a bundle over a point, so we can take a point as the corresponding classifying space. The Thom
space is a sphere; so in that case the relevant homotopy group is πn+k(S

k). This gives a spectacular
interpretation of the homotopy groups of spheres. It is the case Pontryagin considered.

Stabilization

Now it is definitely interesting to consider embedded manifolds, but perhaps abstract manifolds,
without a chosen embedding, are even more interesting, or at least simpler. Whitney proved that
any closed manifold embeds in Euclidean space of twice its dimension, and if you allow the ambient
space to be of even higher dimension you find that any two embeddings are isotopic. Similarly, in
high codimension the cobordisms become unconstrained.

Passing from an embedding in Rn+k to an embedding in Rn+k+1 replaces the normal bundle ν
with ν ⊕ ε. Correspondingly, the map BO(k)→ BO(k + 1) classifies ξk ⊕ ε. This gives us maps

ΣMO(k)→MO(k + 1)

for each k ≥ 1, and hence maps

πn+k(MO(k))→ πn+k+1(MO(k + 1))→ πn+k+2(MO(k + 2))→ · · ·

that correspond to considering manifolds embedded in higher and higher dimension. We also get
maps in homology,

Hn+k(MO(k))→ Hn+k+1(MO(k + 1))→ Hn+k+2(MO(k + 2))→ · · ·

This is a beautiful and motivating example of a (topological!) spectrum: A sequence of pointed
spaces Ek together with maps ΣEk → Ek+1. The direct limit

πn(E) = lim
k→∞

πn+k(Ek)

is the nth homotopy group of the spectrum E. Similarly we can define the homology of the spectrum
E as

Hi(E) = lim
k→∞

Hn+k(Ek) .

Spectra are by default “pointed”; there’s no “unreduced” homology of a spectrum.
We have already seen a number of other spectra! For example, the Eilenberg Mac Lane spectrum

HA for the abelian group A has K(A,n) as its nth space, and the map ΣK(A,n) → K(A,n + 1)
that classifies the suspension of the fundamental class – the adjoint of the equivalence K(A,n) →
ΩK(A,n+ 1).

Spectra are the central objects of study in stable homotopy theory. Here’s a tiny part of that
theory. As an endofunctor of the stable homotopy category, suspension is an equivalence. It is a
consequence of the definition of homotopy equivalence for spectra that the following two proposed
definitions of the suspension of a spectrum E are equivalent.

• (ΣE)n = ΣEn, and the bonding maps are the suspensions of the bonding maps in E;
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• (ΣE)n = En+1, and the bonding maps are the same.

So for example ΣHA is equivalently given by

ΣK(A, 0),ΣK(A, 1), . . . and K(A, 1),K(A, 2), · · · .

The second definition of suspension is clearly a categorical equivalence on the category of spectra.
The spectrum built from Thom spaces as above is the unoriented Thom spectrum, and is denoted

simplyMO. The spaceMO(k) is (k−1)-connected, so the Freudenthal suspension theorem assures
us that the direct limit defining πn(MO) is achieved. We also have Thom spectra MSO and MU ;
the Thom spectrum corresponding to framed manifolds is the sphere spectrum S, with nth space
Sn.

The ambient cobordism theorem stabilizes to give:

Theorem 38.5 (Thom). The Pontryagin-Thom construction gives an isomorphism from the group
of cobordism classes of closed n-manifolds to πn(MO):

Nn
∼=−→ πn(MO) .

So Thom’s classification theorem amounts to computing the homotopy groups of the Thom
spectrum MO.

Characteristic numbers

To compute these homotopy groups we need a way to distinguish cobordism classes from each other:
We need a supply of “cobordism invariants.” Characteristic classes afford such invariants.

Let M be an n-manifold. Embed it in some Euclidean space, M ↪→ Rn+k, and denote the
normal bundle of the embedding by ν. Its mod 2 characteristic classes are polynomials in the
Stiefel-Whitney classes; there are lots of them. The ones that happen to lie in Hn(M) can be
paired against the fundamental class [M ]. The resulting elements of F2 are characteristic numbers.

Lemma 38.6. Characteristic numbers are cobordism invariants.

Proof. We have to show that if M = ∂N then

〈w(ν), [M ]〉 = 0

for any w ∈ Hn(BO). The class [M ] is the boundary of the relative fundamental class [N,M ] ∈
Hn+1(N,M), so using the adjointness of the boundary and coboundary maps

〈w(ν), [M ]〉 = 〈δw(ν), [N,M ]〉 .

We claim that δw(ν) = 0, and we will show that by exhibiting a class in Hn(N) that restricts to
w(ν). By increasing the codimension if necessary, we can assume that the bounding manifold W
embeds in Rn+k× [0,∞), meeting Rn+k× 0 transversely in M . So the normal bundle ν extends the
normal bundle νN of N ↪→ Rn+k × [0,∞), and w(ν) = w(i∗νN ) = i∗w(νN ) (where i : M ↪→ N is
the inclusion of the boundary).

Putting all the characteristic numbers in play at once, we get the “characteristic number map”

Nn → Hom(Hn(BO),F2) = Hn(BO) .
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We’ll reinterpret this map in terms of the Thom spectrum MO.
Let ξ be a real n-plane bundle over a space B. The cohomology Thom isomorphism relied on

the pairing
Th(ξ)→ B+ ∧ Th(ξ) ,

and was given by pairing with the Thom class U ∈ Hn(Th(ξ)). In homology, this pairing produces
the top row in

H∗+n(Th(ξ)) //

∼=

))

H∗(B)⊗Hn(Th(ξ))

1⊗<U,−>
��

H∗(B)

The vertical map is defined using the Kronecker pairing with the Thom class. The diagonal map is
the homology Thom isomorphism.

In the universal case we have isomorphisms

H∗+n(MO(n))
∼=−→ Hn(BO(n)) .

These maps are compatible with stabilization and give the Thom isomorphism

Φ : H∗(MO)
∼=−→ H∗(BO) .

These constructions fit together in the commutative diagram:

Nn α //

��

Hom(Hn(BO;F2),F2)

Hn(BO;F2)

β

∼=

ii

Φ
∼=uu

πn(MO)
h // Hn(MO;F2) .

Thom proved that the mod 2 Hurewicz homomorphism h is a monomorphism. As a corollary:

Corollary 38.7. If the closed n-manifolds M and N have the same Stiefel-Whitney numbers, then
they are cobordant.

This uses algebraic topology to guarantee a very geometric outcome! For example, if all the
Stiefel-Whitney numbers vanish then the manifold is null-bordant: it is the boundary of some
(n+ 1)-manifold-with-boundary.

Thom’s basic homotopy-theoretic theorem is this:

Theorem 38.8 (Thom). The spectrum MO is a product of suspensions of the mod 2 Eilenberg Mac
Lane spectrum.

This implies a positive solution to Steenrod’s question. A convenient way to explain this is via
an observation of Michael Atiyah [2]. Let X be any space (a “background,” in physics parlance),
and consider the set of continuous maps from closed n-manifolds into X, modulo the equivalence
relation given by cobordism of manifolds together with extension of the maps. This is an abelian
group depending covariantly on X,

X 7→ ΩO
n (X)
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Atiyah showed that it is a generalized homology theory. Its “coefficients” are

ΩO
n (∗) = Nn .

There is a natural map, the “Thom reduction,”

ΩO
n (X)→ Hn(X;F2)

given by sending f : M → X to f∗([M ]) ∈ Hn(X;F2). Steenrod’s question asks whether this map
is surjective.

Generalized homology theories are “represented” by spectra. Given a spectrum E and a pointed
space Y , one can form the “smash product” spectrum E ∧ Y with

(E ∧ Y )n = En ∧ Y

and the obvious bonding maps.

Theorem 38.9 (George Whitehead and Edgar Brown). Given any spectrum E, the functors

E∗ : X 7→ πn(E ∧X+)

constitute a generalized homology theory, and any generalized homology theory admits such a repre-
sentation.

In particular

ΩO
n (X) = πn(MO ∧X+) and Hn(X;F2) = πn(HF2 ∧X+)

so the fact that there is a section of the Thom class U : MO → HF2 (given by including the bottom
factor into the product) implies a positive answer to Steenrod’s question.

39 Hopf algebras

Product structure

There is more structure to exploit in our study of the bordism groups. The product of a closed m-
manifoldM and a closed n-manifold N is a closed (m+n)-manifold. This is what gives ΩO

∗ = ΩO
∗ (∗)

its structure as a commutative graded ring. To pass this through the Pontryagin-Thom collapse,
notice that M ×N embeds into the product of ambient Euclidean spaces, and the resulting normal
bundle is the product of the two normal bundles. The universal case of a product of m-plane and
n-plane bundles is represented by a map

BO(m)×BO(n)→ BO(m+ n)

which is covered by the bundle map ξm× ξn → ξm+n and hence induces a map on the level of Thom
spaces:

MO(m) ∧MO(n)→MO(m+ n) .

These maps render MO a “ring spectrum,” making π∗(MO) a graded ring, and the map

ΩO
∗ → π∗(MO)

is a ring isomorphism. Equally, H∗(MO) is a graded ring and the Hurewicz map is a ring homomor-
phism. The homology Thom isomorphism is also multiplicative: The space BO has a commutative
H-space structure derived from Whitney sum, and the map Φ : H∗(BO)→ H∗(MO) is an isomor-
phism of graded rings.
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Hopf algebras

With a field for coefficients, the Künneth theorem delivers for any space X a map

∆ : H∗(X)→ H∗(X ×X)
∼=←− H∗(X)⊗H∗(X)

(all tensors over the coefficient field k) variously termed a “coproduct,” “comultiplication,” or “diag-
onal.” The unique map X → ∗ gives us a “counit” H∗(X)→ k.

Definition 39.1. A k-coalgebra is an k-module A together with k-module maps ε : A → k and
∆ : A→ A⊗A that are unital and associative:

A

∆
��

1

||

1

""

A
∆ //

∆
��

A⊗A

∆⊗1
��

A A⊗A1⊗εoo ε⊗1 // A A⊗A 1⊗∆// A⊗A⊗A .

It is commutative if also
A

∆

{{

∆

##
A⊗A T // A⊗A

commutes.

This makes sense in the graded context as well, when the swap map T should contribute its usual
sign. In that case we say that A is connected if Ai = 0 for i < 0 and ε : A → k is an isomorphism
in dimension 0.

The diagonal in H∗(X) is dual to the cup product: the universal coefficient isomorphism

Hom(H∗(X), k)∼=H∗(X)

sends the diagonal to the cup product (and ε to the unit map k → H∗(X; k)).
If X is an H-space, the product induces the “Pontryagin product” µ : H∗(X) ⊗ H∗(X) →

H∗(X). Since the product and the basepoint inclusion ∗ → X are maps of spaces, they are maps of
coalgebras. We have to say what the coalgebra structure is on a tensor product of coalgebras, say
A and B: define

∆A⊗B : A⊗B ∆⊗∆−−−→ (A⊗A)⊗ (B ⊗B)
1⊗T⊗1−−−−→ (A⊗B)⊗ (A⊗B)

and
εA⊗B : A⊗B ε⊗ε−−→ k ⊗ k = k .

We have described the structure of a bialgebra: an associative multiplication with unit and
an associative comultiplication with counit on the same (possibly graded) vector space, that are
compatible in the sense that the unit and multiplication are coalgebra maps, or, equivalently, that
the counit and comultiplication are algebra maps.

If the H-space X has an “inverse” – a map x 7→ x−1 making it into a group in the homotopy
category – then A = H∗(X) becomes a Hopf algebra: there is a map χ : A→ A such that

A
∆ //

ε

**

A⊗A 1⊗χ // H ⊗A µ // A

A

η

44
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commutes. This “canonical anti-automorphism” χ exists uniquely if A is a connected graded bial-
gebra.

An important and motivating example of an ungraded Hopf algebra is given by the group algebra
of a group G: k[G] admits the diagonal determined by ∆g = g⊗g for g ∈ G. The anti-automorphism
is induced by the map g 7→ g−1. Indeed, a Hopf algebra with commutative diagonal is just a group
object in the category of commutative coalgebras.

The k-linear dual of a k-coalgebra is a k-algebra. If a Hopf algebra is of finite type, its dual
is again a Hopf algebra. So if X is an H-space of finite type then H∗(X) is also a Hopf algebra;
the coproduct comes from the multiplication in X. It’s a good exercise to go through our list of
H-spaces and understand the Hopf algebra structure on their homology and cohomology. Here’s an
example, with coefficients in F2.

Proposition 39.2. Whitney sum renders BO a commutative H-space, and the map BO(1)→ BO
sends the vector space generators of H∗(BO(1)) to polynomial generators ai:

H∗(BO) = F2[a1, a2, . . .] .

Thus H∗(BO) is “bipolynomial”: both homology and cohomology are polynomial algebras.
The diagonal puts strong restrictions on the algebra structure of a Hopf algebra.

Proposition 39.3 (Hopf and Leray). Let A be a graded connected Hopf algebra of finite type over a
field of characteristic zero, and suppose the product is commutative. Then A is a free commutative
graded algebra.

This means that A is a tensor product of a polynomial algebra on even generators and an exterior
algebra on odd generators.

Corollary 39.4 (Hopf). The rational cohomology of any connected Lie group is an exterior algebra
on odd generators.

Here’s an analogue in finite characteristic.

Proposition 39.5 (Borel). Let A be a graded connected Hopf algebra of finite type over a perfect
field of characteristic p, and suppose that the product is commutative. If p is odd, A is an exterior
algebra on odd generators tensored with a polynomial algebra on even generators modulo the ideal
generated by pkth powers of some of those generators. If p = 2, it is a polynomial algebra modulo
2kth powers of some generators.

The Steenrod algebra and its dual

Given two modules M and N over a Hopf algebra A, their tensor product over k has a canonical
structure of module over A again:

A⊗M ⊗N ∆⊗1⊗1−−−−−→ A⊗A⊗ (M ⊗N)
1⊗T⊗1−−−−→ (A⊗M)⊗ (A⊗N)

ϕ⊗ϕ−−−→M ⊗N

When A = k[G], this is the familiar diagonal tensor product of representations.
John Milnor [25] made the observation that the Cartan formula may be formulated in terms of

a Hopf algebra structure on the Steenrod algebra itself:
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Proposition 39.6. The association

∆ : Sqk →
∑
i+j=k

Sqi ⊗ Sqj

extends to an algebra map, and provides the (commutative!) coproduct in a Hopf algebra structure
on the Steenrod algebra A∗.

The Cartan formula then merely asserts that the cup product H∗(X) ⊗H∗(X) → H∗(X) is a
map of A∗-modules.

This is pleasant, but much more striking is the insight this gives you into the structure of the
Steenrod algebra. Write A∗ for the Hopf algebra dual to A∗.

Proposition 39.7. There exist elements ζi ∈ A2i−1 such that

A∗ = F2[ζ1, ζ2, . . .]

and (with ζ0 = 1)
∆ζk =

∑
i+j=k

ζ2j

i ⊗ ζj .

This is equivalent to the Adem relations, but it’s much easier to remember!

Lagrange and Thom

Theorem 39.8. H∗(MO) is free as module over the Steenrod algebra A∗.

Thom gave a fairly elaborate combinatorial proof of this theorem, writing down a basis. It turns
out that a little bit of Hopf algebra technology makes this a lot simpler (or at least more believable).

Lemma 39.9 (“Lagrange”; see e.g. [38], p. 94). Let A be a connected Hopf algebra and C a connected
coalgebra with compatible A-module structure (so that the counit and diagonal are A-module maps).
Let u ∈ C0 be such that εu = 1. If Au is free, then C is free as A-module.

The reference to Lagrange is this: A common application of this lemma is to take C to be a Hopf
algebra containing A as a subalgebra. The result is that C is automatically free as an A-module.
This is analogous to an observation attributed to Lagrange: If G is a group and H < G a subgroup
then the translation action of H on G is free.

We will apply it with A = A∗ and C = H∗(MO). Then H0(MO) is generated by the Thom
class U , so what we have to do is to check that A∗ acts freely on the Thom class.

This is proved using the following amazing observation of Thom’s:

Proposition 39.10 ([41]). Let ξ be a vector bundle over B, with Thom space Th(ξ). Then

SqiU = wi ∪ U .

This provides a definition of the Stiefel-Whitney classes that only uses the spherical fibration
determined by the vector bundle, and indeed one that makes sense for any spherical fibration. It’s
quite easy to prove that these classes satisfy the axioms.

Exercise 39.11. Let M be a closed smooth n-manifold. By Poincaré duality, there is for each k a
unique class vk ∈ Hk(M) such that 〈vkx, [M ]〉 = 〈Sqkx, [M ]〉 for all x ∈ Hn−k(M). These are the
“Wu classes” of the manifold. Show that Sqv = w(τM ). The tangential Stiefel-Whitney classes are
therefore homotopy invariants of the manifold. Show that the normal Stiefel-Whitney classes are as
well, and conclude that if two closed manifolds are homotopy equivalent then they are cobordant.
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Conclusion

Stably, cohomology is represented by the Eilenberg Mac Lane spectrum. Pick a basis B forH∗(MO)
as an A∗-module. Each element b ∈ B determines a homotopy class MO → Σ|b|HF2. Assembling
them gives a map

MO →
∏
b∈B

Σ|b|HF2

that is an isomorphism in mod 2 cohomology. Since the homotopy of MO is all 2-torsion, this map
is actually weak equivalence.

The Eilenberg Mac Lane spectrum HF2 is a commutative ring spectrum as well; the ring struc-
ture represents the cup product in cohomology. Its homology is thus a graded commutative algebra,
namely the dual of the Steenrod algebra (which is the cohomology ofHF2!). We can now estimate the
size of π∗(MO): Each basis element produces a suspended copy of A∗ in H∗(MO) = F2[a1, a2, . . .].
It looks like the Milnor generators, ζi ∈ A2i−1 account for some of the ai’s. The rest must come
from the homotopy. Some further argumentation leads to the conclusion that

π∗(MO) = F2[xi : i+ 1 is not a power of 2 ] .

40 Applications of cobordism

Oriented cobordism

The Pontryagin-Thom collapse/transversality story is very general, and provides for example an
isomorphism

ΩSO
∗
∼=π∗(MSO) .

The oriented bordism groups were computed completely by C.T.C. Wall. All torsion is killed
by 2. The first few groups are

n 0 1 2 3 4 5 6 7
ΩSO
n Z 0 0 0 Z Z/2Z 0 0

Wall’s computation is involved, but at least it’s quite easy to determine π∗(MSO)⊗Q, by virtue
of a general observation.

Proposition 40.1. For any spectrum E, the rational Hurewicz map

π∗(E)⊗Q→ H∗(E;Q)

is an isomorphism.

There are many ways to see this. For example, up to weak equivalence we may build up a
spectrum by attaching cells. Both πs∗ and H∗ are generalized homology theories; they send cofiber
sequences to long exact sequence. So it’s enough to show that the map is an isomorphism for the
case of the sphere spectrum, where it follows from Serre’s calculation of the rational homotopy of
spheres.

So we have the commutative diagram of algebra isomorphisms

ΩSO
∗ ⊗Q //

��

Hom(H∗(BSO;Q),Q)

π∗(MSO)⊗Q // H∗(MSO;Q) H∗(BSO;Q)oo

OO
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where the top arrow is the characteristic number map sending [M ] to (p 7→ 〈p(ν), [M ]〉). This
already says something important: The rational Pontryagin numbers of a manifold determine is
position in the rational oriented bordism ring. If they all vanish on a manifold M , some multiple
of M bounds an oriented manifold-with-boundary.

Again, BSO is a commutative H-space, so H∗(BSO;Q) is a Q-Hopf algebra, and so by the
Hopf-Leray theorem it is a polynomial algebra. Since H∗(BSO;Q) = Q[p1, p2, . . .], we find that
the homology is also a polynomial algebra on generators of dimension 4k. An analysis of the
characteristic numbers of projective spaces shows that we may take the classes of the even complex
projective spaces as the polynomial generators:

ΩSO
∗ ⊗Q = Q[[CP 2], [CP 4], . . .] .

Steenrod operations on the Thom class

When Thom tried to move beyond this rational calculation, and follow his analysis of the homotopy
type of MO, he ran into trouble at odd primes. There are odd primary Steenrod operations,
constructed in the same way as the squares were. (A nice reference for this is [12].) They take the
form

P i : Hn(X;Fp)→ Hn+2(p−1)i(X;Fp) .

Now P 0x = x, Pnx = xp if |x| = 2n, Pnx = 0 if |x| < 2n. There is also the Bockstein operation
β : Hn(X;Fp) → Hn+1(X;Fp). These operations generate all the additive operations on mod p
cohomology. The dual of A∗, for p odd, has the form [25]

A∗ = E[τ0, τ1, . . .]⊗ Fp[ξ1, ξ2, . . .] , |τi| = 2pi − 1 , |ξi| = 2pi − 2 .

Now H1(BSO) = 0 (we’ve killed w1!), so H1(MSO) = 0 as well; the Thom class U ∈ H0(MSO)
is killed by the Bockstein. It turns out that at p = 2, β = Sq1 generates the annihilator ideal of U .
This isn’t so bad, since in fact

H∗(HZ;F2) = A∗/A∗Sq1

and indeed MSO(2) splits as a product of Eilenberg Mac Lane spectra (but now not just HF2’s but
also HZ(2)’s).

But at an odd prime the situation is worse; the annihilator of U ∈ H0(MSO;Fp) is the left ideal
generated by βP i for all i. This implies, for example, that βP 1 kills the Thom class of the normal
bundle for any embedding of an oriented manifold into Euclidean space. The Thom spectrumMSO
does not split as a product of Eilenberg Mac Lane spectra at an odd prime.

Duality

To see how this behavior of Steenrod operations on the Thom class leads to Thom’s counterexample
to the oriented form of Steenrod’s question, we have to explain something about duality in homotopy
theory. One of the motivations for the development of the stable homotopy category was a desire
to make this story smooth. We will be brief, however.

Any finite complex K may be embedded into some finite dimensional Euclidean space Rm. It
can be arranged that the complement has a finite subcomplex L as a deformation retract. Alexander
duality then gives us an isomorphism

α : Hm−q(K)∼= H̃q−1(L)

for any q.
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A homotopy-theoretic duality underlies this homological duality: L (or an appropriate desuspen-
sion of it in the stable homotopy category) is the “Spanier-Whitehead dual” of K+. This geometry
implies that with mod p coefficients this isomorphism commutes with the action of Steenrod oper-
ations. To make sense of this, use the universal coefficient theorem to reexpress homology as the
linear dual of cohomology:

Hm−q(K) = Hm−q(K)∨ .

This imposes a “contragredient” right action of A∗ on homology, with θ ∈ Ar acting in such a way
that

〈x, cθ〉 = 〈θx, c〉 .

The isomorphism α demands a left action of A∗, which is achieved by acting in homology by θ where
θ 7→ θ is the Hopf anti-automorphism. The duality isomorphism is compatible with this action; that
is, for c ∈ Hm−q(K),

θ(αc) = α(cθ) .

Now suppose that M ↪→ Rn+k is an embedding of a closed manifold, with normal bundle ν. Let
N be the closure of a regular neighborhood of M ; it may be identified with D(ν).

The complement Rn+k − E(ν) is our finite complex L. Here’s an important point: we have
equivalent cofiber sequences

Rn+k − E(ν) //

'
��

Rn+k //

'
��

Rn+k/(Rn+k − E(ν)) ∼=

'
��

D(ν)/S(ν) = Th(ν)

L // CL // ΣL

so
Th(ν) ' ΣL .

In short, the Thom space of the normal bundle is (up to suspension) the Spanier-Whitehead dual
of M+. This is “Milnor-Spanier duality.” Atiyah [1] proved a version of this for manifolds-with-
boundary and it is often called “Atiyah duality.”

The duality isomorphism is thus

α : Hn−q(M)
∼=−→ H

q+k
(Th(ν)) .

Combining this with the Thom isomorphism gives an isomorphism

Hn−q(M)
∼=−→ Hq(M) .

This is Poincaré duality! and indeed a proof of it can be given along these lines.

Thom’s counterexample

The duality map sends the fundamental class [M ] ∈ Hn(M) to the Thom class U ∈ Hn+k(Th(ν)).
Thus if θ ∈ Aq annihilates the Thom class, we find that

α([M ]θ) = θ(α[M ]) = θU = 0 ,

so for any x ∈ Hn−q(M)
0 = 〈x, [M ]θ〉 = 〈θx, [M ]〉 .

The image of θ in Hn(M) annihilates the fundamental class.
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Let f : M → X be any map, and x ∈ Hn−q(X), and compute

〈θx, f∗[M ]〉 = 〈f∗θx, [M ]〉 = 〈θ(f∗x), [M ]〉 = 0 .

So in order for a class in Hn(X) to be carried by an oriented n-manifold the image of θ in Hn(X)
must annihilate it.

For a specific example, Thom looked at K1 = K(Z/3Z, 1). This is an infinite “lens space.” The
cohomology is

H∗(K1;F3) = E[e]⊗ F3[x] , |e| = 1 , |x| = 2 .

The Steenrod action is determined by

βe = x , P 1x = x3 .

The anti-automorphism is easily seen to send both β and P 1 to their negatives, so

βP 1 = P 1β .

The class x3 ∈ H6(K1;F3) is in the image of this class, so the dual homology class cannot be carried
by an oriented closed manifold.

This is mod p; how about integrally? The Bocksteins tell us that H∗(K1;Z) is unfortunately
concentrated in odd degrees, while P 1βH∗(K1;F3) = 0 in odd degrees. So Thom moves up a
dimension to K2 = K(Z/3Z, 2). It’s known, and not hard to verify by pulling back under the map
K1 ×K1 → K2 classifying the cup product, that βP 1βι2 6= 0. In homology, then, there is a class
c ∈ H8(K2;F3) such that cβP 1β 6= 0 in H2(K2;F3). The class cβ ∈ H7(K2;F3) can’t be carried by
an oriented manifold since

〈P 1βι, cβ〉 = 〈βP 1(βι), c〉 6= 0 .

But the Bockstein factors as

H8(K2;F3)
∂−→ H7(K2;Z)

ρ−→ H7(K2,F3) ,

so ∂c ∈ H7(K2;Z) can’t be carried by a manifold since its reduction βc ∈ H7(K2;F3) can’t be.
The Postnikov system for MSO provides further obstructions.

The Brown-Peterson spectrum

The annihilator ideal of U ∈ H0(MSO) at an odd prime is the two-sided ideal generated by the
Bockstein. The quotient by this ideal turns out to be the cohomology of a ring spectrum – not
an Eilenberg Mac Lane spectrum, but rather a new gadget called the “Brown-Peterson spectrum”
and denoted (without reference to the prime p) by BP . (Frank Peterson, 1930–2000, was an MIT
faculty member and long-time treasurer of the AMS.) At odd primes, MSO splits into a product
of suspensions of BP . The mod p Thom class restricts to a map BP → HFp that induces an
embedding of H∗(BP ) ↪→ A∗ as the polynomial algebra on the ξ’s.

The homotopy type of MU was studied by Milnor using the Adams spectral sequence. It turns
out that

π∗(MU) = Z[x1, x2, . . .] , |xi| = 2i .

It turns out that MU localized at any prime p splits as a product of the p-local Brown-Peterson
spectrum as well (even if p = 2). The homotopy of BP is also a polynomial algebra, but now much
sparser:

π∗(BP ) = Z(p)[v1, v2, . . .] , |vi| = 2pi − 2 .
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Surgery

There is a simple way to modify a manifold to give a new manifold with different topology but
related by a cobordism. The most classical example of surgery occurs in dimension 2. Start with
an embedded loop L in a closed surface M . Assume that the normal bundle of L is framed (always
the case ifM is orientable), so that we have an embedding of S1×D1 intoM . This kind of product
is familiar! In general

∂(Dp ×Dq) = Sp−1 ×Dq ∪Sp−1×Sq−1 Dp × Sq−1 .

In our case p = 2 and q = 1. We can remove the interior of ∂D2 × D1 and replace it with the
interior of D2× ∂D1 = D2×S0, to get a new manifold M ′. If the regular neighborhood of the loop
was a belt around a waste (or “handle”), this has the effect of removing the belt and capping off the
two body parts. This process is called “surgery.”

What’s a little harder to see is that Dp ×Dq can be used to construct a cobordism between M
and M ′.

A proof using Morse theory [26] shows that any two closed n manifolds in the same bordism
class can be connected by a bordism constructed by a series of surgeries.

The surgery operation, pioneered by Milnor and Wallace and later Browder, Novikov, and Wall,
led to an enormous research program aimed at the classification of manifolds up to diffeomorphism.

Exercise 40.2. Show that any positive dimensional oriented bordism class contains a connected
manifold. Show that any oriented cobordism class of dimension at least 2 contains a simply con-
nected manifold. Display counterexamples to these to statements in lower dimensions.

Remark 40.3. The surgery process involves killing homology groups in a manifold. It requires
establishing that (1) the class is spherical – in the image of the Hurewicz map; (2) the map from a
sphere is a smooth embedding; and (3) the normal bundle of this embedded sphere is trivial.

Typically the first requirement is met using the Hurewicz theorem; we try to kill bottom di-
mensional homology. The second can be achieved by Whitney embedding theorem as long as we
are below the middle dimension of the manifold. The third is much more problematic. One way
to ensure that the process can continue above dimension one is to work with framed bordism. The
Pontryagin-Thom theorem identifies this with stable homotopy, so there is considerable interest in
this case. The surgery process then works to find a “highly connected” representative of a framed
bordism class in which the homology is concentrated in the middle dimension. When n is odd, any
class in Ωfr

n has is represented by a homotopy sphere, since there is then no middle dimension. The
same turns out to be true when n = 4k. When n = 4k + 2, there is a potential obstruction, the
Kervaire invariant, with values in C2. It’s already visible in dimension 2, when the square of the
nontrivially framed circle (which represents the stable homotopy class η of the Hopf map S3 → S2)
is not framed null-bordant (since in fact η2 6= 0). The higher dimensional Hopf fibrations give other
examples in dimensions 6 and 14. William Browder proved that the invariant could be nonzero
only in dimensions of the form 2j − 2, and identified the invariant in terms of the Adams spectral
sequence. In the 1970’s examples were constructed using homotopy theory in dimensions 30 and 62,
and in 2015 work of Mike Hill, Mike Hopkins, and Doug Ravenel finally showed that the invariant
is in fact trivial for dimensions larger than 126 (where it remains unknown today).

Signature

This ability to move around within a cobordism class suggests that there are very few bordism invari-
ants that one an derive from cohomology. What homological features of a manifold are cobordism
invariants?
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When M is an oriented 4k-manifold, H2k(M ;Q) supports a symmetric bilinear form, the “in-
tersection form”

x · y = 〈xy, [M ]〉

which is nondegenerate on account of Poincaré duality. A fact from linear algebra: Any symmetric
bilinear form over Q is diagonal with respect to some basis. If it is nondegenerate then all the
diagonal entries in the diagonalization are nonzero, and the difference between the number of positive
entries and the number of negative entries is a independent of the diagonalizing basis. It is the
signature of the bilinear form.

Lemma 40.4 (Thom). The signature of the intersection form of an oriented 4k-manifold is a
multiplicative oriented bordism invariant.

This follows from Lefschetz duality and the Künneth theorem. The result is a graded ring
homomorphism

σ : ΩSO
∗ → Z[u] , |u| = 4 .

Such a ring homomorphism is a genus. (This term entered mathematics from biology through
Gauss’s work on quadratic forms, and then spread to the genus of a surface, and then to other
numerical invariants of manifolds.) Since the characteristic number map is a rational isomorphism,
the value of a rational genus on a 4k-manifold M is some Pontryagin number.

Since the even complex projective spaces generate ΩSO
∗ rationally, giving the value of a genus on

them completely specifies the value of the genus on any oriented manifold. Since CP 2k obviously
has signature 1 for any k, the signature is in a sense the simplest genus. For each k there is a
polynomial

Lk ∈ H4k(BSO;Q)

in the Pontryagin classes such that for any closed oriented 4k-manifold M

σ(M) = 〈Lk(νM ), [M ]〉 .

This is the “Hirzebruch signature theorem.” Identifying these polynomials is a beautiful story. The
results are for example that

L1 =
p1

3
, L2 =

7p2 − p2
1

45
, L3 =

62p3 − 13p2p1 + p3
1

945
, . . . .

These formulas put divisibility conditions on certain combinations of Pontryagin classes of the
normal bundle of an embedding of a closed manifold into Euclidean space: while the L-class has
denominators, you get an integral class when you pair it against the fundamental class. The first
normal Pontryagin class of an orientable 4-manifold has to be divisible by 3, for example.

The signature theorem in dimension 8 played a key role in Milnor’s proof that certain S3-bundles
over S4 are not diffeomorphic to the standard 7-sphere despite being homeomorphic to it.
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