
Overview
	

This will be a mostly self-contained research-oriented course designed for undergraduate students 
(but also extremely welcoming to graduate students) with an interest in doing research in theoretical 
aspects of algorithms that aim to extract information from data. These often lie in overlaps of 
two or more of the following: Mathematics, Applied Mathematics, Computer Science, Electrical 
Engineering, Statistics, and/or Operations Research. 

The topics covered include: 

1. Principal Component Analysis (PCA) and some random matrix theory that will be used to 
understand the performance of PCA in high dimensions, through spike models. 

2. Manifold Learning and Diffusion Maps:	 a nonlinear dimension reduction tool, alternative to 
PCA. Semisupervised Learning and its relations to Sobolev Embedding Theorem. 

3. Spectral Clustering and a guarantee for its performance: Cheeger’s inequality. 

4. Concentration of Measure and tail bounds in probability, both for scalar variables and matrix 
variables. 

5. Dimension reduction through Johnson-Lindenstrauss Lemma and Gordon’s Escape Through 
a Mesh Theorem. 

6. Compressed Sensing/Sparse Recovery, Matrix Completion, etc. If time permits, I will present 
Number Theory inspired constructions of measurement matrices. 

7. Group Testing.	 Here we will use combinatorial tools to establish lower bounds on testing 
procedures and, if there is time, I might give a crash course on Error-correcting codes and 
show a use of them in group testing. 

8. Approximation algorithms in Theoretical Computer Science and the Max-Cut problem. 

9. Clustering on random graphs: Stochastic Block Model. Basics of duality in optimization. 

10. Synchronization, inverse problems on graphs, and estimation of unknown variables from pair-
wise ratios on compact groups. 

11. Some extra material may be added, depending on time available. 

Open Problems 
A couple of open problems will be presented at the end of most lectures. They won’t necessarily 
be the most important problems in the field (although some will be rather important), I have tried 
to select a mix of important, approachable, and fun problems. In fact, I take the opportunity to 
present two problems below. 

0.2.1� Komlós� Conjecture� 

We�start�with�a�fascinating�problem� in�Discrepancy�Theory.� 
Open� Problem� 0.1� (Komlós� Conjecture)� Given� n,� let� K(n)� denote� the� infimum� over� all� real� 

nnumbers� such� that:� for� all� set� of� n� vectors� u1, . . . , un� � ∈� R� satisfying� luil2� ≤� 1,� there� exist� signs� 
Ei� =�±1�such� that� 

lE1u1� +�E2u2� +�· · ·�+�Enunl∞� ≤�K(n).� 
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There exists a universal constant K such that K(n) ≤ K for all n. 

An early reference for this conjecture is a book by Joel Spencer [Spe94]. This conjecture is 
tightly connected to Spencer’s famous Six Standard Deviations Suffice Theorem [Spe85]. Later in 
the course we will study semidefinite programming relaxations, recently it was shown that a certain 
semidefinite relaxation of this conjecture holds [Nik13], the same paper also has a good accounting 
of partial progress on the conjecture. 

√ 
• It is not so difficult to show that K(n) ≤ n, try it! 

0.4.2 Matrix AM-GM inequality 

We move now to an interesting generalization of arithmetic-geometric means inequality, which has 
applications on understanding the difference in performance of with- versus without-replacement 
sampling in certain randomized algorithms (see [RR12]). 

Open Problem 0.2 For any collection of d × d positive semidefinite matrices A1, · · · , An, the 
following is true: 
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where Sym(n) denotes the group of permutations of n elements, and 1 · 1 the spectral norm. 

Morally, these conjectures state that products of matrices with repetitions are larger than 
without. For more details on the motivations of these conjecture (and their formulations) see [RR12] 
for conjecture (a) and [Duc12] for conjecture (b). 

Recently these conjectures have been solved for the particular case of n = 3, in [Zha14] for (a) 
and in [IKW14] for (b). 
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