
4 Concentration Inequalities, Scalar and Matrix Versions

4.1 Large Deviation Inequalities

Concentration and large deviations inequalities are among the most useful tools when understanding
the performance of some algorithms. In a nutshell they control the probability of a random variable
being very far from its expectation.

The simplest such inequality is Markov’s inequality:

Theorem 4.1 (Markov’s Inequality) Let X ≥ 0 be a non-negative random variable with E[X] <
∞. Then,

E[X]
Prob{X > t} ≤

t
. (31)

Proof. Let t > 0. Define a random variable Yt as

Yt =

{
0 if X ≤ t
t if X > t

Clearly, Yt ≤ X, hence E[Yt] ≤ E[X], and

tProb{X > t} = E[Yt] ≤ E[X],

concluding the proof. 2

Markov’s inequality can be used to obtain many more concentration inequalities. Chebyshev’s
inequality is a simple inequality that control fluctuations from the mean.

Theorem 4.2 (Chebyshev’s inequality) Let X be a random variable with E[X2] <∞. Then,

Var(X)
Prob{|X − EX| > t} ≤ .

t2

Proof. Apply Markov’s inequality to the random variable (X − E[X])2 to get:

(X
Prob X EX > t = Prob t2

E
(X EX)2 >

[
− EX)2

{| − | } { − } ≤
t2

]
Var(X)

= .
t2

2

4.1.1 Sums of independent random variables

In what follows we’ll show two useful inequalities involving sums of independent random variables.
The intuitive idea is that if we have a sum of independent random variables

X = X1 + · · ·+Xn,

where Xi are iid centered random variables, then while the value of X can be of order O(n) it will very
likely be of order O(

√
n) (note that this is the order of its standard deviation). The inequalities that

follow are ways of very precisely controlling the probability of X being larger than O(
√
n). While we

could use, for example, Chebyshev’s inequality for this, in the inequalities that follow the probabilities
will be exponentially small, rather than quadratic, which will be crucial in many applications to come.
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Theorem 4.3 (Hoeffding’s Inequality) Let X1, X2, . . . , Xn be independent bounded random vari-
ables, i.e., |Xi| ≤ a and E[Xi] = 0. Then,{∣∣∣∑n ∣∣∣ } (

t2
Prob ∣∣ Xi∣∣ > t

=1

≤ 2 exp
i

−
2na2

)
.

The inequality implies that fluctuations larger than O (
√
n) have small probability. For example,

for t = a
√

2n log n we get that the probability is at most 2 .n
nProof. We first get a probability bound for the event i=1Xi > t. The proof, again, will follow

from Markov. Since we want an exponentially small probability, we use a classical trick that involves
exponentiating with any λ > 0 and then choosing the optim

∑
al λ.

Prob

{∑n
Xi > t

i=1

}
= Prob

{∑n
Xi > t

i=1

}
(32)

= Prob
{
eλ

∑n X λti=1 i > e

E[eλ

}
≤

∑n
i=1Xi ]

etλ
n

= e−tλ
∏

E[eλXi ], (33)
i=1

where the penultimate step follows from Markov’s inequality and the last equality follows from inde-
pendence of the Xi’s.

We now use the fact that |Xi| ≤ a to bound E[eλXi ]. Because the function f(x) = eλx is convex,

λx a+ x
e ≤

2a
eλa +

a− x
e−λa,

2a

for all x ∈ [−a, a].
Since, for all i, E[Xi] = 0 we get

E[eλXi ] ≤ E
[
a+Xi

2a
eλa +

a−Xi

2a
e−λa

]
≤ 1

2

(
eλa + e−λa

)
= cosh(λa)

Note that15

cosh(x) ≤ ex2/2, for all x ∈ R

Hence,
E[eλXi ] ≤ E[e(λXi)

2/2] ≤ e(λa)2/2.

Together with (32), this gives

Prob

{∑n n
2

Xi > t

}
≤ e−tλ

=1

∏
e(λa) /2

i i=1

= e−tλen(λa)2/2

215This follows immediately from the Taylor expansions: cosh(x) =
∑∞ nx
n=0 (2n)!

, ex
2/2 =

∑∞
n=0

x2n ,
2n and (2n)!
n!

≥ 2nn!.
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This inequality holds for any choice of λ ≥ 0, so we choose the value of λ that minimizes

min
λ

{
(λa)2

n tλ
2
−

}
Differentiating readily shows that the minimizer is given by

t
λ = ,

na2

which satisfies λ > 0. For this choice of λ,

n(λa)2 1
/2− tλ =

n

(
t2

2a2
− t2

a2

)
= − t2

2na2

Thus,

Prob

{∑n
Xi > t

i=1

}
2

≤ e−
t

22na

By using the same argument on
∑n

i=1 (−Xi), and union bounding over the two events we get,

Prob

{∣∣∣∑n 2∣∣ Xi

i

∣∣∣∣∣ > t

}
≤ 2e−

t

=1

22na

2

Remark 4.4 Let’s say that we have random variables r1, . . . , rn i.i.d. distributed as

−
ri =

 1 with probability p/2

 0 with probability 1− p
1 with probability p/2.

Then, E(ri) = 0 and |ri| ≤ 1 so Hoeffding’s inequality gives:

Prob

{∣∣∣∑n∣∣ ri
i=1

∣∣∣∣∣ > t

}
2

2 exp

(
t≤ − .
2n

)
Intuitively, the smallest p is the more concentrated |

∑n
i=1 ri| should be, however Hoeffding’s in-

equality does not capture this behavior.

nA natural way to quantify this intuition is by noting that the variance of i=1 ri depends on p as
Var(ri) = p. The inequality that follows, Bernstein’s inequality, uses the variance of the summands to
improve over Hoeffding’s inequality.

∑
The way this is going to be achieved is by strengthening the proof above, more specifically in

step (33) we will use the bound on the variance to get a better estimate on E[eλXi ] essentially by

realizing that if Xi is centered, EX2
i = σ2 2

, and |Xi| ≤ a then, for k ≥ 2, EXk
i ≤ σ2ak−2 =

(
σ a
a2

)
k.
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Theorem 4.5 (Bernstein’s Inequality) Let X1, X2, . . . , Xn be independent centered bounded ran-
dom variables, i.e., |Xi| ≤ a and E[X 2 2

i] = 0, with variance E[Xi ] = σ . Then,

n
t2

Prob

{∣∣∣∑∣∣ Xi > t 2 exp
i=1

∣∣}∣∣ ≤
(∣ −

2nσ2 + 2
3at

)
.

Remark 4.6 Before proving Bernstein’s Inequality, note that on the example of Remark 4.4 we get

Prob

{∣∣∣∣∣
n∑
i=1

ri

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2np+ 2 ,
t3

)
which exhibits a dependence on p and, for small values of p is considerably smaller than what Hoeffd-
ing’s inequality gives.

Proof.
As before, we will prove {∑n 2

Prob Xi t
i=1

}
≤ exp

(
t

> −
2nσ2 + 2 ,

at3

)
− nand then union bound with the same result for i=1Xi, to prove the Theorem.

For any λ > 0 we have

∑

Prob

{∑n
Xi > t

i=1

}
= Prob{eλ

∑
Xi > eλt}

E[eλ≤
∑
Xi ]

eλt
n

= e−λt
∏

E[eλXi ]
i=1

Now comes the source of the improvement over Hoeffding’s,

E[eλXi ] = E

[ ∞

1 + λXi +
∑ λmXm

i

m=2
m!

]

≤ 1 +
∞∑
m=2

λmam−2σ2

m!

σ2

= 1 +
(

m

∑∞ λa)m

a2
=2

m!

= 1 +
σ2

e
a2

(
λa − 1− λa

Therefore,

)

Prob

{∑n
Xi > t

i=1

}
≤ e−λt

[
σ2

1 +
a2

(
eλa − 1− λa

)]n
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We will use a few simple inequalities (that can be easily proved with calculus) such as16 1 + x ≤
ex, for all x ∈ R.

This means that,
σ2 2σ (eλa 1 λa)1 + eλa 1
a

(
− − λa

)
≤ e 2a

− − ,
2

which readily implies {
n

}
2

)Prob Xi > t
i=1

≤ e−
nσ

λt 2 (eλae a
−1−λa .

As before, we try to find the value

∑
of λ > 0 that minimizes

nσ2

min λt+ (eλa 1 λa)
2λ

{
−

a
− −

}
Differentiation gives

nσ2

−t+ (aeλa − a) = 0
a2

which implies that the optimal choice of λ is given by

1 at
λ∗ = log 1 +

a

(
nσ2

)
If we set

at
u = , (34)

nσ2

then λ∗ = 1 log(1 + u).a
Now, the value of the minimum is given by

nσ2 nσ2

− ∗ ∗
λ t+ (eλ a − 1− λ∗a) = − [(1 + u) log(1 + u)

a2 a2
− u] .

Which means that,

Prob

{
n

nσ
Xi > t

i=1

}
2

≤ exp

(
−
a2
{(1 + u) log(1 + u)− u}

)
The rest of the proof follo

∑
ws by noting that, for every u > 0,

u
(1 + u) log(1 + u)− u ≥ , (35)2 + 2

u 3

which implies:

{∑n } (
nσ2 u

Prob Xi > t
i=1

≤ exp −
a2 2 + 2

u 3

)

= exp

(
t2− .

2nσ2 + 2at3

)
2

16In fact y = 1 + x is a tangent line to the graph of f(x) = ex.
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4.2 Gaussian Concentration

One of the most important results in concentration of measure is Gaussian concentration, although
being a concentration result specific for normally distributed random variables, it will be very useful
throughout these lectures. Intuitively it says that if F : Rn → R is a function that is stable in terms
of its input then F (g) is very well concentrated around its mean, where g ∈ N (0, I). More precisely:

Theorem 4.7 (Gaussian Concentration) Let X = [X1, . . . , Xn]T be a vector with i.i.d. standard
Gaussian entries and F : Rn → R a σ-Lipschitz function (i.e.: |F (x) − F (y)| ≤ σ‖x − y‖, for all
x, y ∈ Rn). Then, for every t ≥ 0

≤
(

t2
Prob {|F (X)− EF (X)| ≥ t} 2 exp −

2σ2

)
.

For the sake of simplicity we will show the proof for a slightly weaker bound (in terms of the constant

inside the exponent): Prob {|F (X)− EF (X)| ≥ t} ≤ 2 exp
(
− 2
π2

t2

σ2 . This exposition follows closely

the proof of Theorem 2.1.12 in [Tao12] and the original argument

)
is due to Maurey and Pisier. For

a proof with the optimal constants see, for example, Theorem 3.25 in these notes [vH14]. We will
also assume the function F is smooth — this is actually not a restriction, as a limiting argument can
generalize the result from smooth functions to general Lipschitz functions.
Proof.

If F is smooth, then it is easy to see that the Lipschitz property implies that, for every x ∈ Rn,
‖∇F (x)‖2 ≤ σ. By subtracting a constant to F , we can assume that EF (X) = 0. Also, it is enough
to show a one-sided bound

2
Prob {F (X)− EF (X) ≥ t} ≤ exp

(
−
π2

t2
,

σ2

)
since obtaining the same bound for −F (X) and taking a union bound would gives the result.

We start by using the same idea as in the proof of the large deviation inequalities above; for any
λ > 0, Markov’s inequality implies that

Prob {F (X) ≥ t} = Prob {exp (λF (X)) ≥ exp (λt)}
E [exp (λF (X))]≤

exp (λt)

This means we need to upper bound E [exp (λF (X))] using a bound on ‖∇F‖. The idea is to
introduce a random independent copy Y of X. Since exp (λ·) is convex, Jensen’s inequality implies
that

E [exp (−λF (Y ))] ≥ exp (−EλF (Y )) = exp(0) = 1.

Hence, since X and Y are independent,

E [exp (λ [F (X)− F (Y )])] = E [exp (λF (X))]E [exp (−λF (Y ))] ≥ E [exp (λF (X))]

Now we use the Fundamental Theorem of Calculus in a circular arc from X to Y :
π

F (X)− F (Y ) =

∫
2

0

∂

∂θ
F (Y cos θ +X sin θ) dθ.
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The advantage of using the circular arc is that, for any θ, Xθ := Y cos θ +X sin θ is another random
variable with the same distribution. Also, its derivative with respect to θ, Xθ

′ = −Y sin θ + X cos θ
also is. Moreover, Xθ and Xθ

′ are independent. In fact, note that

E
[
XθXθ

′ T
]

= E T[Y cos θ +X sin θ] [−Y sin θ +X cos θ] = 0.

We use Jensen’s again (with respect to the integral now) to get:

π
exp (λ [F (X)− F (Y )]) = exp

(
λ

2

1

π/2

∫ π/2

0

∂

∂θ
F (Xθ) dθ

)

≤ 1

π/2

∫ π/2

0
exp

(
λ
π

2

∂
F (Xθ)

∂θ

)
dθ

Using the chain rule,

2
exp (λ [F (X)− F (Y )]) ≤

π

∫ π/2

0
exp

(
λ
π

F
2
∇ (Xθ) ·Xθ

′
)
dθ,

and taking expectations

2
E exp (λ [F (X)− F (Y )]) ≤

π

∫ π/2

0
E exp

(
λ
π

F
2
∇ (Xθ) ·Xθ

′
)
dθ,

If we condition on Xθ, since
∥∥λπ2∇F (Xθ)

∥∥ ≤ λπ2σ, λπ2∇F (Xθ) · X ′θ is a gaussian random variable

with variance at most
(
λπ2σ

)2
. This directly implies that, for every value of Xθ

EX′θ exp
(
λ
π

2
∇F (Xθ) ·X ′θ

)
≤ exp

[
1

2

(
λ
π 2
σ

2

) ]
Taking expectation now in Xθ, and putting everything together, gives

E [exp (λF (X))] ≤ exp

[
1

2

(
λ
π 2
σ

2

) ]
,

which means that

Prob {F (X) ≥ t} ≤ exp

[
1

2

(
λ
π 2
σ

2

)
− λt

]
,

Optimizing for λ gives λ∗ =
(

2
π

)2 t ,
σ2 which gives

Prob {F (X) ≥ t} ≤ exp

[
2−
π2

t2

σ2

]
.

2
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4.2.1 Spectral norm of a Wigner Matrix

We give an illustrative example of the utility of Gaussian concentration. Let W ∈ Rn×n be a standard
Gaussian Wigner matrix, a symmetric matrix with (otherwise) independent gaussian entries, the off-

n(n+1)diagonal entries have unit variance and the diagonal entries have variance 2. ‖W‖ depends on 2

independent (standard) gaussian random variables and it is easy to see that it is a
√

2-Lipschitz
function of these variables, since∣∣∣‖W (1)‖ − ‖W (2)‖ ≤ W (1) −W (2) ≤ W (1) −W (2) .

F

The symmetry√ of the matrix and the variance

∣∣∣ ∥∥ ∥ ∥∥
2 of the diagon

∥∥∥ ∥∥
al entries are

∥∥
responsible for an extra

factor of 2.
Using Gaussian Concentration (Theorem 4.7) we immediately get

Prob {‖W‖ ≥ E‖W‖+ t} ≤ exp

(
t2−
4

)
.

Since17 E‖W‖ ≤ 2
√
n we get

Proposition 4.8 Let W ∈ Rn×n be a standard Gaussian Wigner matrix, a symmetric matrix with
(otherwise) independent gaussian entries, the off-diagonal entries have unit variance and the diagonal
entries have variance 2. Then,

Prob
{
‖W‖ ≥ 2

√
n+ t

}
≤ exp

(
− t

2

.
4

)
Note that this gives an extremely precise control of the fluctuations of ‖W‖. In fact, for t = 2

√
log n

this gives

Prob
{
‖W‖ ≥ 2

√
n+ 2

√
log n

}
≤ exp

(
−4 log n

4

)
=

1
.

n

4.2.2 Talagrand’s concentration inequality

A remarkable result by Talagrand [Tal95], Talangrad’s concentration inequality, provides an analogue
of Gaussian concentration to bounded random variables.

Theorem 4.9 (Talangrand concentration inequality, Theorem 2.1.13 [Tao12]) Let K > 0,
and let X1, . . . , Xn be independent bounded random variables, |Xi| ≤ K for all 1

n
≤ i ≤ n. Let

F : R → R be a σ-Lipschitz and convex function. Then, for any t ≥ 0,

t2
Prob {|F (X)− E [F (X)]| ≥ tK} ≤ c1 exp

(
−c2 ,

σ2

)
for positive constants c1, and c2.

Other useful similar inequalities (with explicit constants) are available in [Mas00].

17It is an excellent exercise to prove E‖W‖ ≤ 2
√
n using Slepian’s inequality.
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4.3 Other useful large deviation inequalities

This Section contains, without proof, some scalar large deviation inequalities that I have found useful.

4.3.1 Additive Chernoff Bound

The additive Chernoff bound, also known as Chernoff-Hoeffding theorem concerns Bernoulli random
variables.

Theorem 4.10 Given 0 < p < 1 and X1, . . . , Xn i.i.d. random variables distributed as Bernoulli(p)
random variable (meaning that it is 1 with probability p and 0 with probability 1 − p), then, for any
ε > 0:

• Prob

{
1

n

n∑
i=1

Xi ≥ p+ ε

}
≤

[(
p

p+ ε

)p+ε( 1− p
1− p− ε

)1−p−ε
]n

• Prob

{
1

n

n∑
i=1

Xi ≤ p− ε

}
≤

[(
p

p− ε

)p−ε( 1− p
np

1

)1− +ε

− p+ ε

]

4.3.2 Multiplicative Chernoff Bound

There is also a multiplicative version (see, for example Lemma 2.3.3. in [Dur06]), which is particularly
useful.

Theorem 4.11 Let X1, . . . , Xn be independent random variables taking values is {0, 1} (meaning they
are Bernoulli distributed but not necessarily identically distributed). Let µ = E
δ

∑n
i=1Xi, then, for any

> 0:

δ

• Prob {X > (1 + )µ} <
[

e
δ

(1 + δ)(1+δ)

]µ

• Prob {X < (1− δ)µ} <
[

e−δ
µ

(1− δ)(1−δ)

]
4.3.3 Deviation bounds on χ2 variables

A particularly useful deviation inequality is Lemma 1 in Laurent and Massart [LM00]:

Theorem 4.12 (Lemma 1 in Laurent and Massart [LM00]) Let X1, . . . , Xn be i.i.d. standard
gaussian random variables (N (0, 1)), and a1, . . . , an non-negative numbers. Let

n

Z =
∑

a 2
k

k=1

(
Xk − 1

)
.

The following inequalities hold for any t > 0:

• Prob Z
√

{ ≥ 2‖a‖2 x+ 2‖a‖∞x} ≤ exp(−x),
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• Prob {Z ≤ −2‖a‖2
√
x} ≤ exp(−x),

‖ ‖2
∑nwhere a 2 = k=1 a

2
k and ‖a‖ = max∞ 1≤k a .≤n | k|

Note that if ak = 1, for all k, then Z is a χ2 with n degrees of freedom, so this theorem immediately
gives a deviation inequality for χ2 random variables.

4.4 Matrix Concentration

In many important applications, some of which we will see in the proceeding lectures, one needs to
use a matrix version of the inequalities above.

Given {Xk}nk=1 independent random symmetric d × d matrices one is interested in deviation in-
equalities for

λmax

(
n

Xk

k=1

)
.

For example, a very useful adaptation of Bernstein’s

∑
inequality exists for this setting.

Theorem 4.13 (Theorem 1.4 in [Tro12]) Let {Xk}nk=1 be a sequence of independent random sym-
metric d× d matrices. Assume that each Xk satisfies:

EXk = 0 and λmax (Xk) ≤ R almost surely.

Then, for all t ≥ 0,

Prob

{
λmax

(∑n
Xk

k=1

)
≥ t

}
≤ d · exp

(
−t2

2σ2 + 2

∑n
wher

Rt3

)
e σ2 =

∥∥
E

k=1

(
X2
k

∥)∥
.

Note that ‖A‖ denotes the spectral norm of A.

∥∥ ∥∥
In what follows we will state and prove various matrix concentration results,

∥
somewhat

∥
similar to

Theorem 4.13. Motivated by the derivation of Proposition 4.8, that allowed us to easily transform
bounds on the expected spectral norm of a random matrix into tail bounds, we will mostly focus on
bounding the expected spectral norm. Tropp’s monograph [Tro15b] is a nice introduction to matrix
concentration and includes a proof of Theorem 4.13 as well as many other useful inequalities.

A particularly important inequality of this type is for gaussian series, it is intimately related to
the non-commutative Khintchine inequality [Pis03], and for that reason we will often refer to it as
Non-commutative Khintchine (see, for example, (4.9) in [Tro12]).

Theorem 4.14 (Non-commutative Khintchine (NCK)) Let A1, . . . , An ∈ Rd×d be symmetric
matrices and g1, . . . , gn ∼ N (0, 1) i.i.d., then:

E

∥∥∥∑n 1∥∥ gkAk
k=1

∥∥∥∥∥ ≤ (2 + 2 log(2d)
)

2
σ,

where

σ2 =

∥∥∥∑n∥∥ A2
k

k=1

∥∥∥2∥∥ . (36)
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∑Note that, akin to Proposition 4.8, we can also use Gaussian Concentration to get a tail bound on
‖ n

k=1 gkAk‖. We consider the function

F : Rn →

∥∥∥∑n∥∥ gkAk
k=1

∥∥∥
its

∥ .
We now estimate Lipschitz constant; let g, h ∈ Rn then

∥
∣∣∥∥∑n ∑n

gkAk hk
k=1

∥∥
−

∥∥
Ak

k=1

∥∥∥∥∣∣∣ ∥( ) ( )∥∣∣∥ ∥∥ ∥∥ ∥ ∥∣ ∥∥ ∥∣∣ ≤ ∥∥∥ ∑n n

∥ gkAk −
k=1

∑
hkAk∥ k=1∑n

∥∥
=

∥∥∥∥∥ (gk − hk)Ak
k=1

∥∥∥
v

∑n
=

∥
max T

∥∥(
(gk h

v: ‖v‖=1
− k)Ak

k=1

)
v

n

= max
∑

(gk − hk)
(
vTAkv

v: ‖v‖=1
k=1

)
≤ max

v: ‖v‖=1

√√√√ n∑
k=1

(gk − hk)2

√√√√ n∑
k=1

(vTAkv)2

=

√√√√ n
2max (vTAkv)

v: ‖v
‖g − h‖2,

‖=1

∑
k=1

where the first inequality made use of the triangular inequality and the last one of the Cauchy-Schwarz
inequality.

This motivates us to define a new parameter, the weak variance σ .∗

Definition 4.15 (Weak Variance (see, for example, [Tro15b])) Given A , . . . , A ∈ Rd d
1 n

× sym-
metric matrices. We define the weak variance parameter as

n

σ2 = max
∑( 2

vTAkv .∗
v: ‖v‖=1

k=1

)
This means that, using Gaussian concentration (and setting t = uσ ), we have∗{∥∥∥∑n ≥

( 1

Prob ∥∥ gkAk
k=1

∥∥∥∥∥ 2 + 2 log(2d)
)

2
σ + uσ∗

}
≤ exp

(
−1

u2

2

)
. (37)

This means that although the expected value of ‖
∑n

k=1 gkAk‖ is controlled by the parameter σ, its
fluctuations seem to be controlled by σ . We compare the two quantities in the following Proposition.∗
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Proposition 4.16 Given A1, . . . , An ∈ Rd×d symmetric matrices, recall that

σ =

√√√√∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
2

and σ∗ =

√√√√ 2T

=1

∑n
max (v Akv) .

v: ‖v‖
k=1

We have
σ ≤ σ.∗

Proof. Using the Cauchy-Schwarz inequality,

σ2 = max∗
∑n ( 2

vTAkv
v: ‖v‖=1

k=1
n

)
2

= max vT [Akv]
v: ‖v‖=1

∑
k=1
n

( )
≤ 2max ( v Akv )

v:
‖

‖v
‖ ‖‖

‖=1

∑
k=1∑n

= max
v: ‖v‖=1

‖Akv‖2
k=1
n

= max vTA2
kv

v: ‖v‖=1

∑
k=1

=

∥∥∑n
A2
k

k=1

∥∥
=

∥∥ ∥∥
σ2.

∥∥
2

4.5 Optimality of matrix concentration result for gaussian series

The following simple calculation is suggestive that the parameter σ in Theorem 4.14 is indeed the
correct parameter to understand E ‖

∑n
∑n

k=1 gkAk‖.

E

∥∥∥ 2 2 2n n∥∥ gkAk

∥∥∥∥∥ = E

∥∥∥(∥ ∑∥∥ g k

)
T

kA
k=1 k=1

∥∥∥∥∥∥ = E max v gkAk v
v: ‖v‖=1

(∑
k=1

)

≥ max EvT
v: ‖v‖=1

(∑ 2n

gkAk
k=1

)
v = max vT

v: ‖v‖=1

(∑n
A2
k

k=1

)
v = σ2 (38)

But a natural question is whether the logarithmic term is needed. Motivated by this question we’ll
explore a couple of examples.
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Example 4.17 We can write a d× d Wigner matrix W as a gaussian series, by taking Aij for i ≤ j
defined as

Aij = eie
T
j + eje

T
i ,

if i 6= j, and
Aii =

√
2eie

T
i .

It is not difficult to see that, in this case,
∑

i j A
2
ij = (d + 1)I≤ d×d, meaning that σ =

√
d+ 1. This

means that Theorem 4.14 gives us
E‖W‖ .

√
d log d,

however, we know that E‖W
√

‖ � d, meaning that the bound given by NCK (Theorem 4.14) is, in this
case, suboptimal by a logarithmic factor.18

The next example will show that the logarithmic factor is in fact needed in some examples

T ∈ Rd×d nExample 4.18 Consider Ak = ekek for k = 1, . . . , d. The matrix
∑

k=1 gkAk corresponds to
a diagonal matrix with independent standard gaussian random variables as diagonal entries, and so
it’s spectral norm is given by maxk |gk|. It is known that max1≤k≤d |gk

√
| � log d. On the other hand,

a direct calculation shows that σ = 1. This shows that the logarithmic factor cannot, in general, be
removed.

This motivates the question of trying to understand when is it that the extra dimensional factor
nis needed. For both these examples, the resulting matrix X =

∑
k=1 gkAk has independent entries

(except for the fact that it is symmetric). The case of independent entries [RS13, Seg00, Lat05, BvH15]
is now somewhat understood:

Theorem 4.19 ([BvH15]) If X is a d × d random symmetric matrix with gaussian independent
entries (except for the symmetry constraint) whose entry i, j has variance b2ij then

E‖X‖ .

√√√√max
1≤i≤d

d∑
j=1

b2ij + max
ij
|bij |

√
log d.

Remark 4.20 X in the theorem above can be written in terms of a Gaussian series by taking

Aij = bij eie
T
j + e T

jei ,

for i < j and Aii = biieie
T
i . One can then compute

(
σ and σ

)
:∗

d

σ2 = max
∑

b2 and σ2
∗ � b2ij ij .

1≤i≤d
j=1

This means that, when the random matrix in NCK (Theorem 4.14) has negative entries (modulo
symmetry) then

E‖X‖ . σ +
√

log dσ∗. (39)

18By a � b we mean a . b and a & b.
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Theorem 4.19 together with a recent improvement of Theorem 4.14 by Tropp [Tro15c]19 motivate
the bold possibility of (39) holding in more generality.

Conjecture 4.21 Let A , . . . , A ∈ Rd d
1 n

× be symmetric matrices and g1, . . . , gn ∼ N (0, 1) i.i.d., then:

∑n
E

∥∥∥∥ 1∥ gkAk
k=1

∥∥∥∥∥ . σ + (log d) 2 σ ,∗

While it may very will be that this Conjecture 4.21 is false, no counter example is known, up to
date.

Open Problem 4.1 (Improvement on Non-Commutative Khintchine Inequality) Prove or
disprove Conjecture 4.21.

I would also be pretty excited to see interesting examples that satisfy the bound in Conjecture 4.21
while such a bound would not trivially follow from Theorems 4.14 or 4.19.

4.5.1 An interesting observation regarding random matrices with independent matrices

For the in{dep}endent entries setting, Theorem 4.19 is tight (up to constants) for a wide range of variance

profiles b2ij – the details are available as Corollary 3.15 in [BvH15]; the basic idea is that if the
i≤j

largest variance is comparable to the variance of a sufficient number of entries, then the bound in
Theorem 4.19 is tight up to constants.

However, the situation is not as well understood when the variance profiles b2ij are arbitrary.
i≤j

Since the spectral norm of a matrix is always at least the `2 norm of a row, the

{
follo

}
wing lower bound

holds (for X a symmetric random matrix with independent gaussian entries):

E‖X‖ ≥ Emax
k
‖Xek‖2.

Observations in papers of Lata la [Lat05] and Riemer and Schutt [RS13], together with the results
in [BvH15], motivate the conjecture that this lower bound is always tight (up to constants).

Open Problem 4.2 (Lata la-Riemer-Schutt) Given X a symmetric random matrix with indepen-
dent gaussian entries, is the following true?

E‖X‖ . Emax ‖Xek‖2.
k

The results in [BvH15] answer this in the positive for a large range of variance profiles, but not in
full generality. Recently, van Handel [vH15] proved this conjecture in the positive with an extra factor
of
√

log log d. More precisely, that

E‖X‖ .
√

log log dEmax
k
‖Xek‖2,

where d is the number of rows (and columns) of X.

19We briefly discuss this improvement in Remark 4.32
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4.6 A matrix concentration inequality for Rademacher Series

In what follows, we closely follow [Tro15a] and present an elementary proof of a few useful matrix
concentration inequalities. We start with a Master Theorem of sorts for Rademacher series (the
Rademacher analogue of Theorem 4.14)

Theorem 4.22 Let H1, . . . ,Hn ∈ Rd×d be symmetric matrices and ε1, . . . , εn i.i.d. Rademacher
random variables (meaning = +1 with probability 1/2 and = −1 with probability 1/2), then:

E

∥∥∥∑n 1∥∥ εkHk ≤
k=1

∥∥∥ (∥∥ 1 + 2dlog(d)e
)

2
σ,

where

σ2 =

∥∥∑n
H2
k (40)

k=1

∥∥2

.

Before proving this theorem, we take first a small

∥∥∥
detour

∥∥∥
in discrepancy theory followed by deriva-

tions, using this theorem, of a couple of useful matrix concentration inequalities.

4.6.1 A small detour on discrepancy theory

The following conjecture appears in a nice blog post of Raghu Meka [Mek14].

Conjecture 4.23 [Matrix Six-Deviations Suffice] There exists a universal constant C such that, for
any choice of n symmetric matrices H n n

1, . . . ,Hn ∈ R × satisfying ‖Hk‖ ≤ 1 (for all k = 1, . . . , n),
there exists ε1, . . . , εn ∈ {±1} such that ∥∥∥∑n∥ √∥ εkHk

k=1

∥∥∥∥∥ ≤ C n.

Open Problem 4.3 Prove or disprove Conjecture 4.23.

Note that, when the matrices Hk are diagonal, this problem corresponds to Spencer’s Six Standard
Deviations Suffice Theorem [Spe85].

Remark 4.24 Also, using Theorem 4.22, it is easy to show that if one picks εi as i.i.d. Rademacher
random variables, then with positive probability (via the probabilistic method) the inequality will be
satisfied with an extra

√
log n term. In fact one has

E

∥∥∥∥∥
n∑
k=1

εkHk

∥∥∥∥∥ .
√

log n

√√√√∥∥∥∑n∥∥ H2
k

k=1

∥∥∥∥∥ ≤√log n

√√√√ n∑
k=1

‖Hk‖2 ≤
√

log n
√
n.

Remark 4.25 Remark 4.24 motivates asking whether Conjecture 4.23 can be strengthened to ask for
ε1, . . . , εn such that ∥∥ ∥ ∥ ∥ 1∥∥∑n∥ εkHk

k=1

∥∥ ∥∥ ∥∑n
. ∥∥ H2∥ k

k=1

∥∥∥∥ 2

. (41)
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4.6.2 Back to matrix concentration

Using Theorem 4.22, we’ll prove the following Theorem.

Theorem 4.26 Let T1, . . . , Tn ∈ Rd×d be random independent positive semidefinite matrices, then

E

∥∥ ∥∑n
Ti

i=1

∥∥∥ ≤ ∥∥∥∑ 1
n∥∥ ∥∥ ∥∥ ETi
i=1

∥∥∥∥∥ 2

+
√
C(d)

(
Emax

i
‖Ti‖

) 1
2

2

 ,

where
C(d) := 4 + 8dlog de. (42)

A key step in the proof of Theorem 4.26 is an idea that is extremely useful in Probability, the trick
of symmetrization. For this reason we isolate it in a lemma.

Lemma 4.27 (Symmetrization) Let T1, . . . , Tn be independent random matrices (note that they
don’t necessarily need to be positive semidefinite, for the sake of this lemma) and ε1, . . . , εn random
i.i.d. Rademacher random variables (independent also from the matrices). Then

E

∥∥∥∑n∥ Ti
i=1

∥∥∥∥ ∑n
≤

∥∥
ETi E εiT

i=1

∥∥
+ 2

∥∥∑n
i

i=1

∥∥
Proof. Triangular inequality gives

∥∥ ∥∥ ∥ ∥ ∥∥ ∥∥ ∥ ∥ ∥∥

E

∥∥∥∑n n n∥∥ Ti E (
=1

∥∥∥∥∥ ≤
∥∥∥∑∥∥ Ti + E Ti ETi) .

i i=1

∥∥ ∥∥∑
i=1

−
∥∥

Let us now introduce, for each i, a random matrix

∥∥ ∥∥
Ti
′ iden

∥∥
tically distributed

∥∥∥
to Ti and independent

(all 2n matrices are independent). Then

E

∥∥∥∥∑n∥ (Ti − ETi)

∥∥∥∥∥ = ET

∥∥∥∑n (∥∥ Ti − ETi E
i=1 i=1

− Ti
′

[
Ti
′ − ETi′Ti

′
])∥

n n

∥∥∥
= ET

∥∥∥ET ′∑(
Ti − Ti′

i

∥)
Ti

∥
=1

∥∥ ≤ E

∥∥∥∑ − Ti′
i=1

( ∥∥)
mean that

∥∥
the expectation

∥∥ ,

where we use the notation Ea to is taken

∥ ∥∥
with respect

∥∥
to the variable a

and the last step follows from Jensen’s inequality with respect to ET ′ .
Since Ti − Ti′ is a symmetric random variable, it is identically distributed to εi (Ti − Ti′) which

gives

E

∥∥∥∑n ∥∥ ∥∥∑n n n n

∥∥ (
Ti − Ti′

)∥∥ = E∥∥ ∥∥ εi
(
Ti − Ti′

∥)∥∥∥ ∥∥ ≤ E

∥∥∥∑ ∑∥∥ εiTi

∥∥∥∥∥+ E

∥∥∥∥ εiTi
′

i=1 i=1 i=1 i

∥∥
= 2E

=1

∥∥∑
εiTi

i=1

∥∥
,

concluding the proof.

∥∥∥ ∥ ∥∥∥ ∥∥
2
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Proof. [of Theorem 4.26]
Using Lemma 4.27 and Theorem 4.22 we get

E

∥∥∥∑n n∥∥ Ti E
i=1

∥∥∥∥∥ ≤
∥∥∥∑∥∥ Ti
i=1

∥∥∥∥∥+
√
C(d)E

∥∥∥∥∥
n∑
i=1

T 2
i

∥∥∥∥∥
1
2

The trick now is to make a term like the one in the LHS appear in the RHS. For that we start by
noting (you can see Fact 2.3 in [Tro15a] for an elementary proof) that, since Ti � 0,∥∥∑n

T 2
i

i=1

∥∥∥∥ ∥∥ ∥ ≤ max
i
‖Ti‖ ∥

∥∥∥∥∑n∥ Ti
i=1

∥∥∥∥∥ .
This means that

E

∥∥∑n
Ti

i=1

∥∥∥∥ ≤ ∥∥∥ ∥∥ ∑n∥∥ ∥ ∥∥ ETi
i=1

∥∥∥∥+
√
C(d)E

(max
i
‖Ti‖

) 1
2

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
1
2

 .
Further applying the Cauchy-Schwarz inequality for E gives,

E

∥∥ ∥∥∑n∥∥ Ti

∥∥∥∥ ≤
∥∥∥∑n∥∥ ETi +

i=1 i=1

∥∥∥ √∥∥ C(d)

(
Emax

i
‖Ti‖

) 1
2

(
E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
) 1

2

,

Now that the term E ‖
∑n

i=1 Ti‖ appears in the RHS, the proof can be finished with a simple application
of the quadratic formula (see Section 6.1. in [Tro15a] for details).

2

We now show an inequality for general symmetric matrices

Theorem 4.28 Let Y1, . . . , Yn ∈ Rd×d be random independent positive semidefinite matrices, then

E

∥∥∥∑n √∥ Yi
i=1

∥∥∥∥ ∥∥ ≤ C(d)σ + C(d)L,

where,

σ2 =

∥∥∥∑n∥ EY 2
i

i=1

∥∥∥ 2∥ ∥∥ and L = Emax
i
‖Yi‖2 (43)

and, as in (42),
C(d) := 4 + 8dlog de.

Proof.
Using Symmetrization (Lemma 4.27) and Theorem 4.22, we get

E

∥∥∑n
Yi ≤ 2E

i=1

∥∥
Y

[ ∥∥∥∥ ∥∥∥ Eε
∥∥∑n∥∥ εiYi
i=1

∥∥]∥∥∥ ≤√C(d)E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
1
2

.
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Jensen’s inequality gives

E

∥∥∥∑n∥∥ Y 2
i

i=1

∥∥ 1∥∥∥ 2

≤

(
E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
) 1

2

,

and the proof can be concluded by noting that Y 2
i � 0 and using Theorem 4.26. 2

Remark 4.29 (The rectangular case) One can extend Theorem 4.28 to general rectangular ma-
trices S1, . . . , S

d1 d2
n ∈ R × by setting

Yi =

[
0 Si
ST

,
i 0

]
and noting that

∥∥ 2
∥ ∥[∥ ∥∥∥ 0 Si

]2
∥∥∥ ∥[∥ ∥∥ S ST

Y ∥ i= = i 0
i ∥ T ∥ T

]∥∥∥ {∥ = max
∥∥ST SiS

T
i Si

∥∥ ,∥∥ i

∥∥} .
Si 0 0 Si Si

We defer the details to [Tro15a]

In order to prove Theorem 4.22, we will use an AM-GM like inequality for matrices for which,
unlike the one on Open Problem 0.2. in [Ban15d], an elementary proof is known.

Lemma 4.30 Given symmetric matrices H,W, Y ∈ Rd×d and non-negative integers r, q satisfying
q ≤ 2r,

Tr
[
HW qHY 2r−q]+ Tr

[
HW 2r−qHY q

]
≤ Tr

[
H2
(
W 2r + Y 2r

)]
,

and summing over q gives

∑2r
r 1

Tr HW qHY 2 −q 2r +

q=0

[ ]
≤
(

+
2

)
Tr
[
H2
(
W 2r Y 2r

)]
We refer to Fact 2.4 in [Tro15a] for an elementary proof but note that it is a matrix analogue to

the inequality,
µθλ1−θ + µ1−θλθ ≤ λ+ θ

for µ, λ ≥ 0 and 0 ≤ θ ≤ 1, which can be easily shown by adding two AM-GM inequalities

µθλ1−θ ≤ θµ+ (1− θ)λ and µ1−θλθ ≤ (1− θ)µ+ θλ.

Proof. [of Theorem 4.22]
Let X =

∑n
k=1 εkHk, then for any positive integer p,

1

E‖X‖ ≤
(
E‖X‖2p

)
2p =

(
E‖X2p‖

) 1
2p ≤

(
ETrX2p

) 1
2p ,

where the first inequality follows from Jensen’s inequality and the last from X2p � 0 and the obser-
vation that the trace of a positive semidefinite matrix is at least its spectral norm. In the sequel, we
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upper bound ETrX2p. We introduce X+i and X−i as X conditioned on εi being, respectively +1 or
−1. More precisely

X+i = Hi +
∑

εjHj and X−i = −Hi +
j 6=i

∑
εjHj .

j=6 i

Then, we have

ETrX2p = ETr
[
XX2p−1

] n

= E
∑

Tr εiHiX
2p−1.

i=1

Note that E Tr
[
ε H X2p−1

]
= 1

εi i i 2 Tr
[
Hi

(
X2p−1

+i −X2p−1
−i

)]
, this means that

ETrX2p =
n∑
i=1

E
1 [

pTr Hi

(
2 pX −1
+i − 2X i

−1

2 −

)]
,

where the expectation can be taken over εj for j 6= i.
2pNow we rewrite X+i
−1 − 2pX −1

−i as a telescopic sum:

2∑p
p

−2
2 1
+i
− − 2p 1X X−i

− q 2p 2 q= X+i (X+i

q=0

−X )X − −
−i −i .

Which gives
n 2p−2

1
ETrX2p =

∑
i=1

∑
E

q=0

qTr
[

pHiX+i (X+i − 2 2 qX i)X i
− −

2
− −

]
.

Since X+i −X−i = 2Hi we get

∑n 2∑p−2

ETrX2p q 2p 2= ETr
[

qHiX+iHiX
− −

−i
i=1 q=0

]
. (44)

We now make use of Lemma 4.30 to get20 to get

n
1

ETrX2p
∑ 2p−≤
i=1

2
ETr

[
H2
i

(
X2p−2

+i +X2p−2
−i

)]
. (45)

20See Remark 4.32 regarding the suboptimality of this step.
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Hence,

∑n 2p− 1

i=1

2p−2 2p−2X
ETr

2

[ n X+i +
H2 2p 2 2p 2 2 −i
i

)(
X+i

− +X i
−
)]

= (2p 1) H− −
∑

ETr
i=1


i

(
2


n


= (2p− 1)

∑
ETr

i=1

[
H2
i Eεi

[
X2p−2

n

]]
= (2p− 1)

∑
ETr

i=1

[
H2
i X

2p−2
]

= (2p− 1)ETr

[(∑n
H2
i

i=1

)
X2p−2

]

Since X2p−2 � 0 we

Tr

[(have∑n
H2 2 2
i

)
X2p−2

]
≤

∥∥∥∑n∥ 2p∥ H2 2p 2
i

∥
−

i=1

∥TrX = σ TrX
i=1

∥∥ − , (46)

which gives
ETrX2p

∥
≤ σ2(2p− 1)ETrX2p−2. (47)

Applying this inequality, recursively, we get

ETrX2p ≤ [(2p− 1)(2p− 3) · · · (3)(1)]σ2pETrX0 = (2p− 1)!!σ2pd

Hence,

E‖X‖ ≤
( 1

ETrX2p
)

2p ≤ [(2p− 1)!!]
1
2p σd

1
2p .

Taking p = dlog de and using the fact that (2p− 1)!! ≤
(

2p+1
p

(see [Tro15a] for an elementary proofe

consisting essentially of taking logarithms and comparing the

)
sum with an integral) we get

E‖X‖ ≤
(

2dlog de+ 1

e

) 1
2

σd
1

2dlog de ≤ (2dlog de+ 1)
1
2 σ.

Remark 4.31 A similar argument can be used to prove Theorem 4.14 (the gaussian series case) based
on gaussian integration by parts, see Section 7.2. in [Tro15c].

Remark 4.32 Note that, up until the step from (44) to (45) all steps are equalities suggesting that
this step may be the lossy step responsible by the suboptimal dimensional factor in several cases (al-
though (46) can also potentially be lossy, it is not uncommon that H2

i is a multiple of the identity
matrix, which would render this step also an equality).

In fact, Joel Tropp [Tro15c] recently proved an improvement over

∑
the NCK inequality that, essen-

tially, consists in replacing inequality (45) with a tighter argument. In a nutshell, the idea is that, if
the Hi’s are non-commutative, most summands in (44) are actually expected to be smaller than the
ones corresponding to q = 0 and q = 2p− 2, which are the ones that appear in (45).
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4.7 Other Open Problems

4.7.1 Oblivious Sparse Norm-Approximating Projections

There is an interesting random matrix problem related to Oblivious Sparse Norm-Approximating
Projections [NN], a form of dimension reduction useful for fast linear algebra. In a nutshell, The
idea is to try to find random matrices Π that achieve dimension reduction, meaning Π ∈ Rm×n with
m � n, and that preserve the norm of every point in a certain subspace [NN], moreover, for the
sake of computational efficiency, these matrices should be sparse (to allow for faster matrix-vector
multiplication). In some sense, this is a generalization of the ideas of the Johnson-Lindenstrauss
Lemma and Gordon’s Escape through the Mesh Theorem that we will discuss next Section.

Open Problem 4.4 (OSNAP [NN]) Let s ≤ d ≤ m ≤ n.

1. Let Π ∈ Rm×n be a random matrix with i.i.d. entries

δriσri
Πri = √ ,

s

where σri is a Rademacher random variable and

δri =

{
1√
s

with probability s
m

0 with probability 1− s
m

Prove or disprove: there exist positive universal constants c1 and c2 such that

For any U ∈ Rn×d for which UTU = Id×d

Prob (ΠU)T (ΠU)− I ≥ ε < δ,

d+log( 1

for m

∥ ∥
≥ c

{∥ ∥ }
1

δ )
ε2

and s ≥ c2
log( dδ ) .
ε2

2. Same setting as in (1) but conditioning on

∑m
δri = s, for all i,

r=1

meaning that each column of Π has exactly s non-zero elements, rather than on average. The
conjecture is then slightly different:

Prove or disprove: there exist positive universal constants c1 and c2 such that

For any U ∈ Rn×d for which UTU = Id×d

Prob
{∥∥(ΠU)T (ΠU)− I

1

∥ ≥ ε} < δ,

for m ≥ d+log(
c

∥
1

δ )
ε2

and s ≥ c2
log( dδ )
ε .
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3. The conjecture in (1) but for the specific choice of U :

U =

[
Id×d .

0(n−d)×d

]
In this case, the object in question is a sum of rank 1 independent matrices. More precisely,
z1, . . . , zm ∈ Rd (corresponding to the first d coordinates of each of the m rows of Π) are i.i.d.
random vectors with i.i.d. entries

1

(zk)j

 −
= 

√
s

with probability s
2m

0 with probability 1− s
m

1√
s

with probability s
2m

Note that EzkzTk = 1 I . The conjecture is then that, there exists c1 and c2 positive universalm d×d
constants such that {∥∥∥∑m

Prob T
k

k=1

[
zkz

T
k − Ezkz

∥∥ }∥ ]∥∥ ∥∥ ≥ ε < δ,

for m ≥ d+log( 1

c1
δ )

ε2
and s ≥ c2

log( dδ ) .
ε2

I think this would is an interesting question even for fixed δ, for say δ = 0.1, or even simply
understand the value of

E

∥∥∥∑m
.

k=1

[
zkz

T
k − EzkzTk

∥]∥∥
4.7.2 k-lifts of graphs

∥∥ ∥∥

Given a graph G, on n nodes and with max-degree ∆, and an integer k ≥ 2 a random k lift G⊗k of G
is a graph on kn nodes obtained by replacing each edge of G by a random k k bipartite matching.
More precisely, the adjacency matrix A⊗k k

×
of G⊗ is a nk × nk matrix with k × k blocks given by

A⊗kij = AijΠij ,

where Πij is uniformly randomly drawn from the set of permutations on k elements, and all the edges
are independent, except for the fact that Πij = Πji. In other words,

A⊗k =
∑

Aij
(
eie

T
j ⊗Πij + e T

jei
i<j

⊗ΠT
ij

)
,

where ⊗ corresponds to the Kronecker product. Note that

1
EA⊗k = A⊗

(
J

k

)
,

where J = 11T is the all-ones matrix.
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Open Problem 4.5 (Random k-lifts of graphs) Give a tight upperbound to

E
∥∥∥A⊗k − EA⊗k

∥∥∥ .
Oliveira [Oli10] gives a bound that is essentially of the form

√
∆ log(nk), while the results in [ABG12]

suggest that one may expect more concentration for large k. It is worth noting that the case of k = 2
can essentially be reduced to a problem where the entries of the random matrix are independent and
the results in [BvH15] can be applied to, in some case, remove the logarithmic factor.

4.8 Another open problem

Feige [Fei05] posed the following remarkable conjecture (see also [Sam66, Sam69, Sam68])

Conjecture 4.33 Given n independent random variables X1, . . . , Xn s.t., for all i, Xi ≥ 0 and EXi =
1 we have

Prob

(∑n
Xi

i=1

≥ n+ 1

)
≤ 1− e−1

Note t∑hat, if Xi are i.i.d. and(Xi = n + 1 with probability 1/(n + 1) and Xi = 0 otherwise, then
nProb ( i=1Xi ≥ n+ 1) = 1− n

n

n+1

)
≈ 1− e−1.

Open Problem 4.6 Prove or disprove Conjecture 4.33.21

21We thank Francisco Unda and Philippe Rigollet for suggesting this problem.
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