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1. Introduction

A spanning tree in a connected graph G is a subgraph that contains every vertex of G and is

itself a tree. Clearly, if G is a tree then it has only one spanning tree. Every connected graph

contains at least one spanning tree: iteratively remove an edge from any cycle that is present until

the graph contains no cycles. Counting spanning trees is a very natural problem. Following Lyons

[5] we will see how the theory of graph limits does this in an asymptotic sense. There are many

other interesting questions that involve understanding spanning trees in large graphs, for example,

what is a ‘random spanning tree’ of Zd? We will not discuss these questions in this note, however,

the interested reader should see chapters 4, 10 and 11 of Lyons and Peres [7].

Let us begin with some motivating examples. Let Pn denote the path on n vertices. Each Pn

naturally embeds into the bi-infinite path whose vertices are the set of integers Z with edges between

consecutive integers. By an abuse of notation we denote the bi-infiite path as Z. It is intuitive to

say that Pn converges to Z as these paths can be embedded into Z in a nested manner such that

they exhaust Z. Clearly, both Pn and Z contain only one spanning tree.

Figure 1. Extending a spanning tree in Z[−1, 1]2 to a spanning tree in Z[−2, 2]2.

Black edges form a spanning tree in Z[−1, 1]2. Red vertices form the cluster of

chosen vertices on each side and isolated blue vertices are not chosen. Corner

vertices are matched arbitrarily to one of their neighbours.

The previous example was too simple. Let us move to the infinite planar grid Z2 where things

are more interesting. Let Z[−n, n]2 denote the square grid graph on [−n, n]2, that is, the subgraph
1
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spanned by [−n, n]2 in Z2. There are exponentially many spanning trees in Z[−n, n]2 in terms of

its size. Indeed, let us see that any spanning tree in Z[−n + 1, n − 1]2 can be extended to at least

28n different spanning trees in Z[−n, n]2. Consider the boundary of Z[−n, n]2 which has 8n vertices

of the form (±n, y) or (x,±n). There are four corner vertices (±n,±n) and vertices on the four

sides (±n, y) or (x,±n) where |x|, |y| < n. Consider any subset of vertices S on the right hand side

{(n, y) : |y| < n}, say. The edges along this side partition S into clusters of paths; two vertices are

in the same cluster if they lie on a common path (see the red vertices in Figure 1). Pick exactly

one vertex from each cluster, say the median vertex. Connect each such vertex, say (n, y), to the

vertex (n − 1, y) via the edge (n, y) ↔ (n
2

− 1, y), which is the unique edge connecting (n, y) to

Z[−n + 1, n − 1] . If a vertex (n, y′) on the right hand side is not in S then connect it directly to

Z[−n+ 1, n− 1]2 via the edge (n, y′)↔ (n− 1, y′) (see blue vertices in Figure 1). Do this for each of

the four sides and also connect each of the four corner vertices to any one of its two neighbours. In

this manner we may extend any spanning tree T in Z[−n+ 1, n−1]2 to (22n−1)4 ·24 = 28n spanning

trees in Z[−n, n]2.

Let sptr(Z[−n, n]2) denote the number of spanning trees in Z[−n, n]2. The argument above shows

that sptr(Z[−n, n]2) ≥ 28nsptr(Z[−n + 1, n − 1]2), from which it follows that sptr(Z[ n, n]2)

24n(n+1). As |Z[−n, n]2| = (2n + 1)2 we deduce that log sptr(Z[−n, n]2 2

− ≥
)/|Z[−n, n] | ≥ log 2(1 +

O(n−2)). It turns out that there is a limiting value of log sptr(Z[−n, n]2)/|Z[−n, n]2| as n → ∞,

which is called the tree entropy of Z2. We will see that the limiting value depends on Z2, which in

an intuitively sense is the limit of the grids Z[−n, n]2. We will in fact calculate the tree entropy.

The tree entropy of a sequence of bounded degree connected graphs {Gn} is the limiting value of

log sptr(Gn)/|Gn| provided it exists. It measures the exponential rate of growth of the number of

spanning trees in Gn. We will see that that tree entropy exists whenever the graphs Gn converge to

a limit graph in a precise local sense. In particular, this will allow us to calculate the tree entropy

of the d-dimensional grids Z[−n, n]d and of random d-regular graphs.

2. Local weak convergence of graphs

We only consider connected labelled graphs with a countable number of vertices and of bounded

degree. A rooted graph (G, x) is a graph with a distinguished vertex x called the root. Two rooted

graphs (G, x) and (H, y) are isomorphic if there is a graph isomorphism φ : G → H such that

φ(x) = y. In this case we write (G, x) ∼= (H, y). We consider isomorphism classes of rooted graphs,

although we will usually just refer to the graphs instead of their isomorphism class. Given any graph

G we denote Nr(G, x) as the r-neighbourhood of x in G rooted at x. The distance between two

(isomorphism classes of) rooted graphs (G, x) and (H, y) is 1/(1+R) where R = min{r : Nr(G, x) ∼=
Nr(H, y)}.

Let G denote the set of isomorphism classes of connected rooted graphs such that all degrees are

bounded by ∆. For concreteness we may assume that all these graphs have a common vertex set,

namely, {1, 2, 3, . . .}. Then G∆ is a metric space with the aforementioned distance function. By

a diagonalization argument it is easy to see that G is a compact metric space. Let F denote the
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Borel σ-algebra of G under this metric; it is generated by sets of the from A(H, y, r) = {(G, x) ∈ G :

Nr(G, x) ∼= Nr(H, y)}. A random rooted graph (G, ◦) is a probability space (G,F , µ); we think of

(G, ◦) as a G-valued random variable such that P
[

(G, ◦) ∈ A
]

= µ(A) for every A ∈ F .

Let us see some examples. Suppose G is a finite connected graph of maximum degree ∆. If ◦G is a

uniform random vertex of G then (G, ◦G) is a random rooted graph. We have P
[

(G, ◦G) = (H, y) =

(1/|G|) × |{x ∈ V (G) : (G, x) ∼= (H, y)}|. If G is a vertex transitive graph, for example Zd, then

]
for any vertex ◦ ∈ G we have a random rooted graph (G, ◦) which is simply the delta measure

supported on the isomorphism class of (G, ◦). The isomorphism class of G consists of G rooted at

different vertices. It is conventional in this case to simply think of (G, ◦) as the fixed graph G. So,

for example, Zd is a ‘random’ rooted graph with root at the origin.

Let Gn be a sequence of finite connected graphs of maximum degree at most ∆. Let ◦n denote a

uniform random vertex of Gn. We say Gn converges in the local weak limit if the law of the random

rooted graphs (Gn, ◦n) converge in distribution to the law of a random rooted graph (G, ◦) ∈ G. For

those unfamiliar with the notion of converge of probability measures here is an alternative definition.

For ev(ery r > 0 and any finite connected ∼

that |x ∈ V (Gn) : Nr(G, x) ∼= (H, y)|
and compactness of G it can be shown

) rooted graph (H, y) with that Nr(H, y) = (H, y) we require

/|Gn| converges as n→∞. Using tools from measure theory

that there is a random rooted graph (

if the ratios in the previous sentence converge then P Nr(Gn, ◦n) =∼ Nr(G, ◦)
every r. This is what it means for (Gn, ◦n) to converge

[
in distribution to (G, ◦

]G, ◦) ∈ G such that

→ 1 as n → ∞ for

).

This notion of local weak convergence was introduced by Benjamini and Schramm [3] in order

to study random planar graphs. Readers interested in a detailed study of local weak convergence

should see Aldous and Lyons [1] and the references therein.

Exercise 2.1. Show that the d-dimensional grid graphs Z[−n, n]d converge to Zd in the local weak

limit. Show that the same convergence holds for the d-dimensional discrete tori (Z/nZ)d, where two

vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) are connected if xi = yi ± 1 (mod n) for exactly one i

and xi = yi for all other i.

Exercise 2.2. Suppose the graphs Gn have maximum degree at most ∆ and converge in the local

weak limit to (G, ◦). Show that[ deg(◦n]) conver[ ges in distribution (as integer valued random variables)

to deg(◦). Conclude that E deg(◦n) → E deg(◦)
]
.

2.1. Local weak limit and simple random walk. Let (G, x) be a rooted graph. The simple

random walk (SRW) on (G, x) (started as x) is a V (G)-valued stochastic process X0 = x,X1, X2 . . .

such that Xk is a uniform random neighbour of Xk 1 picked independently of X0, . . . , X− k−1. The

SRW is a Markov process given by the transition matrix P (u, v) = 1u∼v where udeg(u) ∼ v means that

{u, v} is an edge of G. If G has bounded degree then if is easily verified that P
[
Xk = y |X0 = x =

P k(x, y). The k-step return probability to x is pkG(x) = P k(x, x) for k ≥ 0.

]
Suppose that Gn is a sequence of bounded degree graphs that converge to (G, ◦) in the local weak

limit. We show that the expected k-step return probability of the SRW on (Gn, ◦n) converges to the

expected k-step return probability of the SRW on (G, ◦). Note that if Nr(G, x) ∼= Nr(H, y) then
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pk (x) = pkG H(y) for all 0 ≤ k ≤ 2r since in order for the SRW to return in k steps it must remain in

the (k/2)-neighbourhood on the starting point.

If Gn converges to (G, ◦) then there is a probability space (Ω,Σ, µ) and G-valued random variables

(G′n, ◦′n), (G′, ◦′) on (Ω,Σ, µ) such that (Gn, ◦n) has the law of (G′n, ◦′n), (G, ◦) has the law of (G, ◦),
and for every r ≥ 0 the probability µ(Nr(G

′
n, ◦′n) ∼= Nr(G

′, ◦′)) → 1 as n → ∞. This common

probability space where all the graphs can be jointly defined and satisfy the stated claim follows

from Shorokhod’s representation theorem. On the event {Nk/2(G′n, ◦′n) ∼= Nk/2(G′, ◦′)} we have

pkG (′
n
◦n) = pkG (′ ◦). Therefore,

∣∣E[ pk (◦ )
]
−E

[
pk (◦)

]∣∣ = ∣∣E[ pk ( k
Gn n G ∣ G

′ ) p ( ′)′
n
◦n − G′ ◦

= (

]
∣∣E[ pkG ◦′n)− pkG (◦′);N

∣∣
k/2(G′

n
′

′
n, ◦′n) � Nk/2(G′, ◦′)

≤ 2P
[
Nk/2(G′n, ◦′n) � Nk/2(G′, ◦′)

]
−→ 0 as n

∣
→∞

]∣∣
.

2.2. Local weak limit of random regular graphs. In this section we will show a classical result

that random d-regular graphs converge to the d-regular tree Td in the local weak sense (see Bollobás

[4]). There are a finite number of d-regular graphs on n vertices so we can certainly consider a

uniform random d-regular graph on n vertices whenever nd is even. However, how do we calculate

probabilities and expectations involving a uniform random d-regular graph on n vertices?

First, we would have to calculate the number of d-regular graphs on n vertices. This is no easy

task. To get around this issue we will consider a method for sampling (or generating) a random

d-regular multigraph (that is, graphs with self loops and multiple edges between vertices), This

sampling procedure is simple enough that we can calculate the expectations and probabilities that

are of interest to us. We will then relate this model of random d-regular multigraphs to uniform

random d-regular graphs.

The configuration model starts with n labelled vertices and d labelled half edges emanating from

each vertex. We assume that nd is even with d being fixed. We pair up these nd half edges

uniformly as random and glue every matched pair of half edges into a full edge. This gives a

random d-regular multigraph (see Figure 2). The number of possible matchings of nd half edges is

(nd− 1)!! = (nd− 1)(nd− 3) · · · 3 · 1. Let Gn,d denote the random multigraph obtained this way.

The probability that Gn,d is a simple graph is uniformly bounded away from zero at n→∞. In

fact, Bender and Canfield [2] showed that as n→∞,

P
[
Gn,d is simple

]
→

1− 2d

e 4 .

Also, conditioned on Gn,d being simple its distribution is a uniform random d-regular graph on

n vertices. It follows from these observations that any sequence of graph properties An whose

probability under Gn,d tends to 1 as n → ∞ also tends to 1 under the uniform random d-regular

graph model. In particular, if Gn,d converges to Td in the local weak limit then so does a sequence

of uniform random d-regular graphs.
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Figure 2. A matching of 12 half edges on 4 vertices giving rise to a 3 regular multigraph.

Now we show that Gn,d converges to Td in the local weak limit. Unpacking the definition of local

weak limit this means that for every r > 0 we must show that

(1) E
[ |v ∈ V (Gn,d) : Nr(Gn,d, v) ∼= Nr(Td, ◦)|

n

]
→ 1 as n→∞,

where ◦ is any fixed vertex of Td (note that Td is vertex transitive). Notice that if Nr(Gn,d, v)

contains no cycles then it must be isomorphic to Nr(Td, ◦) due to Gn,d being d-regular. Now

suppose that Nr(Gn,d, v) contains a cycle. Then this cycle has length at most 2r and v lies within

distance r of some vertex of this cycle. Thus the number of vertices v such that Nr(Gn,d, v) is not

a cycle is at most the number of vertices in Gn,d that are within distance r of any cycle of length

2r in Gn,d. Let us call such vertices bad vertices. The number of vertices within distance r of any

vertex x ∈ V (Gn,d) is at most dr. Therefore, the number of bad vertices is at most dr(2r)C≤2r

where C 2r is the[ (random) number of cycles in Gn,d of length at most 2r. It follows from this≤

argument that ∼[ E |v ∈ V (Gn,d) : Nr(Gn,d, v) = Nr(Td, ◦)| ≤ 2rdrE C follo≤2r . The wing lemma

shows that E C 2r
≤2r

]
≤ 2r(3d − 3) if d ≥ 3, and more precisely

]
, E

[
C≤2

]
r converges to a finite

limit as n→∞ for every d. This establishes (1), and thus, Gn,d conv

[
erges to

]
Td in the local weak

limit.

( 1)`Lemma 2.3. Let
[ ] d−[ ] C` be the number of cycles of length ` in Gn,d. Then limn E C→∞ ` = .2`

Moreover, E C` ≤ (3d− 3)` if d ≥ 3.

Proof. Given a set of ` distinct vertices {v1, . . . , v`} the number of ways to arrange them in cyclic

order is (`−1)!/2. Given a cyclic ordering, the number of ways to pair half edges in the configuration

model such that these vertices form a cycle is (d(d

} ( d−1))

−1))`(nd 2` 1)!!. Therefore, the probability that

{ `−1)!(d( `(nd−2`

− −
v1, . . . , v` form an `-cycle in Gn,d is −1)!! . From the linearity of expectation we2(nd−1)!!

conclude that[ ] n (` 1)!(d(d 1))`(nd 2` 1)!!
E C` = P {v1, . . . , v`} forms an `− cycle =

− − − −
.

` 2(nd 1)!!
{v1

∑
,...,v`}

[ ] ( )
−

Note that
(
n
)
≤

`

n`/`!, and in fact if ` is fixed then
(
n
)

= (1 + o(1))n as n → ∞. Similarly,` ` `!

(nd−2`−1)!!/((nd−1)!!) = (1+o(1))(nd)−` as n→∞ and it is at most 3`(nd)−` if d ≥ 3 (provided
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that ` is fixed). It follows from these observations that E
[
C`
]
→ (d − 1)`/(2`), and is at most

(3d− 3)` if d ≥ 3.

3. Enumeration of spanning trees

The Matrix-Tree Theorem allows us to express the number of spanning trees in a finite graph G

in terms of the eigenvalues of the SRW transition matrix P of G. As we will see, this expression

it turn can be written in terms of the return probabilities of the SRW on G. This is good for our

purposes because if a sequence of bounded degree graphs Gn converges in the local weak limit to

a random rooted graph (G, ◦ log sptr(G) then we will be able to express n) in terms of the expected|Gn|

return probabilities of the SRW on (G, ◦). In particular, we shall see that

log sptr(Gn)
lim = E

[
log deg(◦)−

∑ pkG(◦) ]
.

n→∞ |Gn| k
k≥1

The quantity of the r.h.s. is called the tree entropy of (G, ◦). If the limiting graph G is deterministic

and vertex transitive, for example Zd or Td, then the above simplifies to

log sptr(Gn)
lim = log d
n→∞ |Gn

−
|

k

∑ pkG(◦)
,

k
≥1

where d is the degree of G and ◦ is any fixed vertex. In this manner we will be able to find expressions

for the tree entropy of Zd and Td and asymptotically enumerate the number of spanning trees in

the grid graphs Z[−n, n]d and random regular graphs Gn,d.

3.1. The Matrix-Tree Theorem. Let G be a finite graph. Let D be the diagonal matrix consisting

of the degrees of the vertices of G. The Laplacian of G is the |G| × |G| matrix L = D(I −P ), where

I is the identity matrix and P is the transition matrix of the SRW on G. It is easily seen that

L(x, x) = deg(x), L(x, y) = −1 if x ∼ y in G and L(x, y) = 0 otherwise (if G is a multigraph then

L(x, y) equals negative of the number of edges from x to y).

Exercise 3.1. The Laplacian L of a graph G is a matrix acting on the vector space RV (G). Let

(f, g) =
∑
x V (G) f(x)g(x) denote the standard inner product on RV (G). Prove each of the following∈

statements.

(1) (Lf, g) = 1
∑

(x,y)(f(x)− f(y))(g(x) (
x∼y

− g y)).2

(2) L is self-adjoint and positive semi-definite: (Lf, g) = (f, Lg) and (Lf, f) ≥ 0 for all f, g.

(3) Lf = 0 if and only if f is constant on the connected components of f .

(4) The dimension of the eigenspace of L corresponding to eigenvalue 0 equals the number of

connected components of G.

(5) If G is connected and has maximum degree ∆ then L has |G| eigenvalues 0 = λ0 < λ1 ≤
· · · ≤ λ G .|−1 ≤ 2∆|

�
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Let G be a finite connected graph. From part (5) of exercise 2.2 we see that the Laplacian L of

G has n = |G| eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λn−1. The Matrix-Tree Theorem states that

1
(2) sptr(G) =

n−1

n
i

∏
λi.

=1

In other words, the number of spanning trees in G is the product of the non-zero eigenvalues of

the Laplacian of G. In fact, the Matrix-Tree Theorem states something a bit more precise. Let Li

be the (n−1)× (n−1) matrix obtained from L by removing its i-th row and column; Li is called the

(i, i)-cofactor of L. The Matrix-Tree Theorem states that det(Li) = sptr(G) for every i. To derive

(2)∑we consider the characteristic polynomial det(L − tI) of L and note that the coefficient of t is

− i det(Li) = −nsptr(G). On the other hand, if we write the characteristic polynomial in terms
n 1

of its roots, which are the eigenvaluesof L, then we can deduce that the coefficient of t is − −
i=1 λi.

Exercise 3.2. Let G be a connected finite graph and suppose

∏
{x, y} is an edge of G. Let G \ {x, y}

be the graph obtained from removing the edge {x, y} from G. Let G · {x, y} be the graph obtained

from contracting the edge {x, y}. Prove that sptr(G) = sptr(G \ {x, y}) + sptr(G · {x, y}).
Try to prove the Matrix-Tree Theorem by induction on the number of edges of G, the identity

above, and the expression for the determinant in terms of the cofactors along any row.

It is better for us to express (2) in terms of the eigenvalues of the SRW transition matrix P of G.

The matrix P also has n real eigen∑ values. Perhaps the easiest way to see this is to define a new inner

product on RV (G) by (f, g)π = x∈V (G) π(x)f(x)g(x) where π(x) = deg(x)/2e and e is the number

of edges in G. The vector π is∑called the stationary measure of the SRW on G. It is a probability

distribution on V (G), that is, x π(x) = 1. Also, π(x)P (x, y) = π(y)P (y, x). The latter condition

is equivalent to (Pf, g)π = (f, Pg)π for all f, g ∈ RV (G), which means that P is self-adjoint w.r.t. the

inner product (·, ·)π. Due to being self-adjoint it has n real eigenvalues and an orthonormal basis of

eigenvector w.r.t. the new inner product.

Notice that the eigenvalues of P lie in the interval [−1, 1] since ||Pf || ≤ ||f || where∞ ∞ ||f || =∞

maxx V (G){|f(x)|}. If G is connected then the largest eigenvalue of P is 1 and it has multiplicity∈

1 as well. The eigenfuctions for the eigenvalue 1 are constant functions over V (G). Suppose that

−1 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn 1 < µn = 1 are the n eigenvalues of P . If e is the number of edges in G−

then we may rewrite (2) as

(
(3) sptr(G =

∏
x∈V G) deg(x)

)
n−1

)
2e

∏
(1

=1

− µi .
i

This formula is derived from determining the coefficient of t in the characteristic polynomial of I−P ,

which equals (det(D))−1det(L− tD). This is a rather tedious exercise so we leave the derivation to

the interested reader.

From 3 and |G| being n we deduce that

log sptr(G) log 2e(G) x V
= +

∈ (G)
+ i=1 log(1− µi)

.
|G| n n n

∑
log deg(x)

∑n−1
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Since∑ log(1−x) = − 1
k 1 x

k/k for−1 ≤ n 1 n
x < 1 we see that

−
≥ i=1 log(1−µi) = − − k

k≥1 i=1 µi /k.
n

Now,
−1
i=1 µ

k
i = TrP k

∑
− 1 since we exclude the eigenvalue 1

∑
of P that occurs with

∑
multiplicit

∑
y one.

Note that TrP k =
∑
x V (G) p

k
G(x) where pkG(x) in the k-step return probability of the SRW in G∈

started from x. Consequently, we conclude that

log sptr(G) (G)
∑

k
log 2e x V

(4) =
∈ (G) log deg(x)

+
|G| n n

−
∑ 1 ( x∈V (G) pG(x))− 1

.
k n

k≥1

∑
Theorem 3.3. Let Gn be a sequence of finite, connected graphs with maximum degree bounded by ∆

and |Gn| → ∞. Suppose that Gn converges in the local weak limit to a random rooted graph (G, ◦).
log sptr(GThen n) converges to|Gn|

h(G, ◦) = E
[ 1

log deg(◦)−
k

∑
pk

k G(
≥1

◦)
]
.

In particular, suppose that G is a deterministic, vertex transitive graph of degree d. If ◦ ∈ V (G) is

any fixed vertex then the tree entropy of G is defined to be∑ 1
h(G) = log d− pk

k G(
k≥1

◦).

The tree entropy h(G) does not depend on the choice of the sequence of graphs Gn converging to G

in the local weak limit.

To prove this theorem let ◦n be a uniform random vertex of Gn. Then from (3) we get that

log sptr(Gn) 2e(Gn) 1
= + E log

|Gn |Gn|
[

deg(◦n)
]
−

|
k

∑
E pk

k Gn
( n) Gn

−1 .
≥1

( [
◦

]
− | |

)
As Gn has degree bounded by ∆ we have 2e(Gn) =

∑
x V (G deg(x) ∆n. Thus, log(2e(Gn))/ G∈ nn) ≤ | |

converges to 0. Also, deg(◦n) converges in distribution to the degree deg(◦) of (G, ◦) (exercise 2.2).

The function x[ → log x is
[] bounded and continuous if 1 ≤ x ≤ ∆. Therefore, E [log deg( n)

converges to E log deg(◦) . Following the discussion is Section 2.1 we conclude that E pk
◦

G (
n
◦n) −

]
|Gn|−1 converges to E

[
pkG(◦)

]
as well. To conclude the proof it suffices to show that

]
E pkGn

(◦n) − |G −α
n|−1 ≤ k for some α > 0.

Then it follows from the dominated

∣∣∣ [
con

]
vergence

∣∣∣
theorem that

∑
1

k≥1 (E
[
pkG (◦ 1

n)k

]
− |Gnn

|− ) con-

verges to E k as required.≥1 p
k
G(◦)/k ,

Lemma 3.4.

[∑
Let G be a fini

]
te connected graph of maximum degree ∆. Let pkG(x) denote the k-step

return probability of the SRW on G starting at x. Let π(x) = deg(x)/2e for x ∈ V (G), where e is

the number of edges in G. Then for every x ∈ V (G) and k ≥ 0,∣pkG(x) ∆

π(x
− 1
∣ n≤ .

) (k + 1)1/4

Proof. The vector π is a probability

∣∣
measure on

∣∣
V (G). Let (f, g)π = x V (G) π(x)f(x)g(x) for∈

f, g ∈ RV (G). Let P denote the transition matrix of the SRW on G; thus,

∑
pkG(x) = P k(x, x). Note

that π(x)P (x, y) = 1x y/(2e) = π(y)P (y, x). From this we conclude that (Pf, g)π = (f, Pg)π. Let∼
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U ⊂ RV (G) be the subspace of vectors f such that
∑
x π(x)f(x) = 0. Then U is a P invariant

subspace.

Suppose f ∈ RV (G) takes both positive and negative values. Suppose that |f(x0)| = ||f || =∞

maxx V (G) |f(x)|, and by replacing f with −f if necessary we may assume that f(x∈ 0) ≥ 0. Let z be

such that f(z) ≤ 0. Then ||f || ≤ |f(x0) − f(z)|. There is a path x0, x1, . . . , x∞ t = z in G from x0

to z. Therefore,

t

||f ||∞ ≤
∑ 1

i=1

|f(xi−1)− f(xi)| ≤
2

∑
(x,y)∈V (G)×V (G)

x∼y

|f(x)− f(y)|.

Let K(x, y) = π(x)P (x, y) = 1x ∼ y/(2e). The sum above becomes e (x,y)K(x, y)|f(x)− f(y)|.
Consider an f ∈ U , which must take both positive and negative values. Apply the inequality

above to the function sgn(f)f2 and use the inequality |sgn(s)s2 − sgn(t)t2| ≤ |s − t|(|s| + |t|) to

conclude that ||f ||2 ≤ e
∑

(x,y)K(x, y)
[
|f(x)− f(y) y∞ |(|f(x)|+ |f( )|)

]
. Straightforward calculations

show that∑
K(x, y)|f(x)− f(y)|2 =

(
(I − P )f, f

)
and

∑
K(x, y)|f(x) + f(y)|2 =

(
(I + P )f, f

π
(x,y) (x,y)

)
.

π

If we apply the Cauchy-Schwarz inequality to the terms
√
K(x, y)|f(x)−f(y)| and

√
K(x, y)(|f(x)|+

|f(y)|) then we deduce that

||f ||4∞ ≤ e2
(
(I − P )f, f

)
π
·
(
(I + P )|f |, |f | .

π

( Notice that)(Pf, f)π ≤ (f, f)π because all eigenvalues of P lies in

)
the interval [0, 1]. Therefore,

(I+P )|f |, |f | ≤ 2( f
π

| |, |f |)π. If (f, f)π ≤ 1 then we see that
m

||f ||4∞ ≤ 2e2 (I−P )f, f . Applying
π

this to the function P f and using that P is self-adjoint we deduce that

( )

||Pmf ||4 ≤ 2e2 f∞
(
(I − P )Pmf, Pm = 2e2 (P 2m

π
− P 2m+1)f, f .

Since ||Pg|| ≤ ||g|| , if we sum the inequality abo

)
ve over 0

( )
∞ ∞ ≤ m ≤ k we get

k

(k + 1)||P kf ||4 ≤ 2e2
∑
||Pmf || ≤ 2e2

(
(I − P 2k+1)f, f 2

∞
m=0

)
π
≤ 2e .∞

The( last inequalit) y holds because every eigenvalue of I Pm lies in the interval [0, 1] and thus

(I − Pm
−

)f, f ≤ (f, f)π.
π

We have concluded that ||P kf
√

|| ≤ 2e(k + 1)−1/4 if f ∈ U and (f, f)π ≤ 1. Let us now apply∞

√1x(y)−π(x)this to the function f(y) = . Then |P kf(x)
√

| ≤ 2e(k+ 1)−1/4. The value of P kf(x) is
π(x)(1−π(x))

P k(x, x)(1−√π(x))− π(x)
∑
y=x P

k(y, x) P k(x, x)(1−√π(x))− π(x)(1 P
=

− k(x, x))

π(x)(1− π(x)) π(x)(1− π(x))

P k(x, x)
= √ − π(x)

.
π(x)(1− π(x))

∑

6
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Therefore,
∣∣∣Pk(x,x) − 1

∣∣∣ ≤√2eπ(x)−1(1− π(x))(k + 1)−1/4. However, π(x)−1 = 2e/deg(x)π(x) ≤ 2e

and 1 − π(x) ≤ Pk(x,x)1. Thus, we conclude that
∣∣∣ − 1

∣∣∣ ≤ 2e(k + 1)−1/4. As 2e equals the sum ofπ(x)

the degrees in G we have that 2e ≤ ∆n, and this establishes the statement in the lemma.

�

Lemma 3.4 implies that if G is a finite connected graph of maximum degree ∆ then

|G|−1
∣∣(
x∈

∑
pkG(x)

V (G)

)
− 1

∣ ∑ ∣∣∣∣∣ = |G|−1∣∣ (
pkG(x)− π(x)

x∈V (G)

)
1
∑ ∣∣∣pk

∣∣
≤ |G|− π(x) G(x)

π(x)
− 1

x∈V (G)

∣∣∣
∆≤ .

(k + 1)1/4

This proves that
∣∣E[ pk (◦ )

]
− |G |−1 1

G n nn
≤ ∆ k− /4 and completes the proof of Theorem 3.3.

3.2. Tree entropy of T Zdd and . In order

∣∣
to calculate the tree entropy of a graph we have to be

able to compute the return probability of the SRW on the graph. There is a rich enough theory that

does this for d-regular tree and Zd. We begin∑with the d-regular tree Td.
Consider the generating function F (t) = k 0 p

k (◦)tk. Actually note that pk ( if≥ ◦) = 0 k isTd Td

odd because whenever the SRW takes a step along an edge that moves it away from the root it

must traverse that edge backwards in order to return. So it is not possible to return in an odd

number of steps. (This holds in any bipartite graph, for example, Zd as well.) There is a classical

problem called the Ballot Box problem that allows us to compute p2k(Td
◦) explicitly. It turns out that

2k 2kk 1

p2k ( ) (d 1) − ( )
(◦) = k −

2k 1 . The numbers k are called the Catalan numbers. From this it is possibleTd k+1 d − k+1

to find a closed form of F (t) (see Wo

{
ess [9

}
] Lemma 1.24):

2(d
F (t) =

− 1)

d− 1 +
√ .
d2 − 4(d− 1)t2

Note that
∑
k 1 p

k (◦) =
∫ 1 F (t)−1 dt. It turns out that this integrand has an antiderivative and≥ Td 0 t

it can be shown that
(d

h(Td) = log
2

− 1)d−1

.
(d − 2d)(d/2)−1

This result was proved by McKay[[8]. Since the

[
random d-regular

]
graphs Gn,d converge to Td in

the local weak limit we see that E log sptr(Gn,d)
]

= nh(Td) + o(n).

A rigorous calculation of the tree entropy of Zd requires an excursion into operator theory that is

outside the scope of these notes. We will sketch the argument; for details see Lyons [5] Section 4 or

Lyons [6]. Recall the Matrix-Tree Theorem for finite graphs which states that if λ1, . . .∑, λn−1 are the
n 1

positive eigenvalues of the Laplacian of a graph G of size n then log sptr(G)/n = (1/n)
−
i=1 log λi−

(log n)/n. There is an infinitary version of this representation for the tree entropy of Zd. If L is

the Laplacian on Zd, which acts on `2(Zd), then one can define an operator log L on `2(Zd) that

satisfies

h(Zd) =
(

(log L)1o,1o

)
.
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In the above, (·, ·) is the inner product on `2(Zd) and 1o is the indicator function of the origin.

The inner product above may be calculated via the Fourier transform. The Fourier transform

states that `2(Zd) is isomorphic as a Hilbert space to L2([0, 1]d) in that any function f `2(Zd)
~

∈
ˆ ~ ˆcorresponds to an unique f ∈ L2([0, 1]d) such that f(k) =

∫
f(x)e2πi x·k dx. This correspondence

preserves the inner product between functions. The Fourier transform maps 1o to the function that

is identically 1 in [0, 1]d. It also transforms the operator log L to the operator on L2([0, 1]d) which

is multiplication by the function (x1, . . . , xd)→ log(2d− 2
∑
i cos(2πxi)). As the Fourier transform

preserves inner products we get that

d

h(Zd) =

∫
log

[0,1]d

(
2d− 2

∑
cos(2πxi)

i=1

)
dx.

4. Open problems

One can consider the space of (isomorphism classes of) doubly rooted graphs (G, x, y) of bounded

degree, analogous to the space G. It is also a compact metric space where the distance between

(G, x, y) and (H,u, v) is 1/(1 +R) where R is the minimal r such that the r-neighborhood of (x, y)

in G is isomorphic to the r-neighbourhood of (u, v) in H. Consider a Borel measurable function F

from the space of double rooted graphs into [0,∞). Note that F is defined on isomorphism classes

of such graphs, so F (G, x, y) = F (H,u, v) if φ : G→ H is a graph isomorphism satisfying φ(x) = u

and φ(y) = v.

A random rooted graph (G, ◦) is unimodular if for all F as above the following equality holds

E
[ ∑

F (◦, x) E

∼◦ in G

]
=

[ ∑
F (x, ◦)

x x∼◦ in G

]
.

Here is an example. Let G be a finite connected graph and suppose ◦ ∈ G is a uniform random root.

Then∑ (G, ◦) is unimodular because both the left and right hand side of the equation above equals

(x,y) F (x, y), where the sum is over all pair of vertices in G. Unimodularity is preserved under
x∼y

taking local weak limits and so any random rooted graph (G, ◦) that is a local weak limit of finite

connected graphs is unimodular.

It is not known whether the converse is true: is a unimodular random rooted graph (G, ◦) a local

weak limit of finite connected graphs. This is known to be true for unimodular trees (see Aldous

and Lyons [1]). This is a major open problem in the field.

Here is a problem on tree entropy. Bernoulli bond percolation on Td at density p is a random

forest of Td obtained by deleting each edge independently with probability 1 − p. Let ◦ be a fixed

vertex and denote by Cp(◦) the component of ◦ in the percolation process. Then Cp(◦) is finite with

probability one if p ≤ 1/(d − 1) and infinite with positive probability otherwise. Let Cp∞(◦) be the

random rooted tree obtained from Cp(◦) by conditioning it to be infinite if p > 1/(d − 1). In fact,

Cp∞(◦) is unimodular. What is the tree entropy of Cp∞(◦)? Is it strictly increasing in p?
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