
7 Group Testing and Error-Correcting Codes

7.1 Group Testing

During the Second World War the United States was interested in weeding out all syphilitic soldiers
called up for the army. However, syphilis testing back then was expensive and testing every soldier
individually would have been very costly and inefficient. A basic breakdown of a test is: 1) Draw
sample from a given individual, 2) Perform required tests, and 3) Determine presence or absence of
syphilis.

If there are n soldiers, this method of testing leads to n tests. If a significant portion of the
soldiers were infected then the method of individual testing would be reasonable. The goal however,
is to achieve effective testing in the more likely scenario where it does not make sense to test n (say
n = 100, 000) people to get k (say k = 10) positives.

Let’s say that it was believed that there is only one soldier infected, then one could mix the samples
of half of the soldiers and with a single test determined in which half the infected soldier is, proceeding
with a binary search we could pinpoint the infected individual in log n tests. If instead of one, one
believes that there are at most k infected people, then one could simply run k consecutive binary
searches and detect all of the infected individuals in k log n tests. Which would still be potentially
much less than n.

For this method to work one would need to observe the outcome of the previous tests before
designing the next test, meaning that the samples have to be prepared adaptively. This is often not
practical, if each test takes time to run, then it is much more efficient to run them in parallel (at
the same time). This means that one has to non-adaptively design T tests (meaning subsets of the n
individuals) from which it is possible to detect the infected individuals, provided there are at most k
of them. Constructing these sets is the main problem in (Combinatorial) Group testing, introduced
by Robert Dorfman [Dor43] with essentially the motivation described above.31

Let Ai be a subset of [T ] = {1, . . . , T} that indicates the tests for which soldier i participates.
Consider A the family of n such sets A = {A1, . . . , An}. We say that A satisfies the k-disjunct
property if no set in A is contained in the union of k other sets in A. A test set designed in such a
way will succeed at identifying the (at most k) infected individuals – the set of infected tests is also a
subset of [T ] and it will be the union of the Ai’s that correspond to the infected soldiers. If the set
of infected tests contains a certain Ai then this can only be explained by the soldier i being infected
(provided that there are at most k infected people).

Theorem 7.1 Given n and k, there exists a family A satisfying the k-disjunct property for a number
of tests

T = O
(
k2 log n

Proof. We will use the probabilistic method. We will

)
.

show that, for T = Ck2 log n (where C is
a universal constant), by drawing the family A from a (well-chosen) distribution gives a k−disjunct
family with positive probability, meaning that such a family must exist (otherwise the probability
would be zero).

31in fact, our description for the motivation of Group Testing very much follows the description in [Dor43].
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Let 0 ≤ p ≤ 1 and let A be a collection of n random (independently drawn) subsets of [T ].
The distribution for a random set A is such that each t ∈ [T ] belongs to A with probability p (and
independently of the other elements).

Consider k+ 1 independent draws of this random variable, A0, . . . , Ak. The probability that A0 is
contained in the union of A1 through Ak is given by

T
Pr [A0 ⊆ (A1 ∪ · · · ∪Ak)] =

(
1− p(1− p)k .

This is minimized for p = 1

)
k+1 . For this choice of p, we have

1− p(1− p)k = 1− 1

k + 1

(
1− 1 k

k + 1

)
Given that there are n such sets, there are (k + 1) n different ways of picking a set and kk+1

others to test whether the first is contained in the union of the other k. Hence, using a union bound
argument, the probability that A is k-disjunct can be bounded

( )
as

1
Pr[k − disjunct] ≥ 1− ( + 1)

(
n

k
k 1

)(
1

+
−
k + 1

(
1− 1

.
k

) Tk

+ 1

)
In order to show that one of the elements in A is k-disjunct we show that this probability is strictly
positive. That is equivalent to(

1
1−

k + 1

(
1− 1

k + 1

)k)T
≤ 1

.
(k + 1)

(
n
k+1

Note that

)
(

1− 1
k+1

)k
→ e−1 1

1− 1
k+1

= e−1 k+1
k , as k →∞. Thus, we only need

T ≥
log
(

(k + 1)
(
n
k+1

))
− log

(
1− 1

k+1e
−1 k+1

k

) =
log
(
k
(
n
k+1

))
=

− log (1− (ek)−1)
O(k2 log(n/k)),

where the last inequality uses the fact that log
((

n
k+1

))
= O

(
k log

(
n due to Stirling’s formula andk

the Taylor expansion − log(1− x−1)−1 = O(x)

))
2

This argument simply shows the existence of a family satisfying the k-disjunt property. However,
it is easy to see that by having T slightly larger one can ensure that the probability that the random
family satisfies the desired property can be made very close to 1.

Remarkably, the existence proof presented here is actually very close to the best known lower
bound.

Theorem 7.2 Given n and k, if there exists a family A of subsets of [T ] satisfying the k-disjunct
property, then

T = Ω

(
k2 log n

log k

)
.
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Proof.

Fix a u such that 0 < u < T ; later it will be fixed to u :=
⌈
(T2 − k)/

(
k−1 .2

)⌉
We start by

constructing a few auxiliary family of sets. Let

A0 = {A ∈ A : |A| < u},

and let A1 ⊆ A denote the family of sets in A that contain their own unique u-subset,

A1 :=
{
A ∈ A : ∃F ⊆ A : |F | = u and, for all other A′ ∈ A, F 6⊆ A′ .

We will procede by giving an upper bound to A0 ∪A1. For that, we will need a coup

}
le of auxiliary

family of sets. Let F denote the family of sets F in the definition of A1. More precisely,

F := {F ∈ [T ] : |F | = u and ∃!A ∈ A : F ⊆ A} .

By construction |A1| ≤ |F|
Also, let B be the family of subsets of [T ] of size u that contain an element of A0,

B = {B ⊆ [T ] : |B| = u and ∃A ∈ A0 such that A ⊆ B} .

We now prove that |A0| ≤ |B|. Let B′ denote the family of subsets of [T ] of size u that are not in
B,

B′ = B′ ⊆ [T ] : |B′| = u and B′ ∈/ B .

By construction of A0 and B, no

{
set in B′ contains a set in A0 nor

}
does a set in A0 contain a set

in B′. Also, both A0 and B′ are antichains (or Sperner family), meaning that no pair of sets in each
family contains each other. This implies that A0 ∪ B′ is an antichain containing only sets with u or
less elements. The Lubell-Yamamoto-Meshalkin inequality [Yam54] directly implies that (as long as
u < T ) the largest antichain whose sets contain at most u elements is the family of subsets of [T ] of2
size u. This means that

|A0|+
∣∣ T
B′
∣ (∣ =

∣∣A0 ∪ B′
∣∣ ≤ )

= ∣∣B B
u

∪ ′∣∣ = |B|+
∣∣B′

This implies that A .

∣∣ .
| 0| ≤ |B|

Because A satisfies the k-disjunct property, no two sets in A can contain eachother. This implies
that the families B and F of sets of size u are disjoint which implies that

T|A0 ∪ A1| = |A0|+ |A1| ≤ |B|+ |F| ≤
(
u

)
.

Let A2 := A \ (A0 ∪ A1). We want to show that if A ∈ A2 and A1, . . . , Aj ∈ A we have∣∣ ∣∣ j∣∣A \⋃ Ai

∣∣∣∣ > u(k j
i=1

− ). (64)

This is readily shown by

\
⋃noting that if (64) did not hold then one could find Bj+1, . . . , Bk subsets of
j kA of size t such that A i=1Ai ⊆

⋃
i=j+1Bi. Since A as no unique subsets of size t there must exist
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kAj+1, . . . , Ak ∈ A such that Bi ⊆ Ai for i = j + 1, . . . , k. This would imply that A ⊆ i=1Ai which
would contradict the k-disjunct property.

If |A2| > k then we can take A0, A1, . . . , Ak distinct elements of A2. For this choice

⋃
and any

j = 0, . . . , k ∣∣∣∣∣∣Aj \ 0

⋃
Ai 1 + u(k j).

≤i<j

∣∣∣
≥∣∣ −

This means that

∣
∣∣ k

Aj
j=0

∣∣ ∣∣∣⋃ ∣∣ =
j=0

∑
,...,k

∣ ∣∣∣Aj \
≤

⋃
Ai

0 i<j

∣∣∣ ∑ k + 1∣∣ ∣∣ ∣∣ ∣ ≥∣ [1 + u(k − j)] = 1 + k + u

(
.

2
j=0,...,k

)

Since all sets in A are subsets of [T ] we must have 1 + k + u

hand, taking
k + 1

(
k+1 ≤ k

2

) ∣∣⋃
j=0Aj

∣∣ ≤ T . On the other

u :=

∣ ∣⌈
(T − k)/

(
2

)⌉
gives a contradition (note that this choice of u is smaller than T as long as k > 2). This implies that2
|A2| ≤ k which means that

T T
n = |A| = |A0|+ |A1|+ |A2| ≤ k +

( )
= k +

u

(⌈
(T − k)/

(
k+1

2

)
This means that

)⌉ .

log n ≤ log

(
k +

( )) (⌈ T

− k)/
(
k+1

2

) T
= O

(T
⌉ log k

k2

)
,

which concludes the proof of the theorem.
2

We essentially borrowed the proof of Theorem 7.2 from [Fur96]. We warn the reader however that
the notation in [Fur96] is drasticly different than ours, T corresponds to the number of people and n
to the number of tests.

There is another upper bound, incomparable to the one in Theorem 7.1 that is known.

Theorem 7.3 Given n and k, there exists a family A satisfying the k-disjunct property for a number
of tests

n
= O

(
k2

(
log

T
2

log k

) )
.

The proof of this Theorem uses ideas of Coding Theory (in particular Reed-Solomon codes) so we
will defer it for next section, after a crash course on coding theory.

The following Corollary follows immediately.
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Corollary 7.4 Given n and k, there exists a family A satisfying the k-disjunct property for a number
of tests

T = O
(
k2 log n

log k
min

{
log k,

log n
.

log k

})
While the upper bound in Corollary 7.4 and the lower bound in Theorem 7.2 are quite close, there

is still a gap. This gap was recently closed and Theorem 7.2 was shown to be optimal [DVPS14]
(original I was not aware of this reference and closing this gap was posed as an open problem).

Remark 7.5 We note that the lower bounds established in Theorem 7.2 are not an artifact of the
requirement of the sets being k-disjunct. For the measurements taken in Group Testing to uniquely
determine a group of k infected individuals it must be that the there are no two subfamilies of at most
k sets in A that have the same union. If A is not k− 1-disjunct then there exists a subfamily of k− 1
sets that contains another set A, which implies that the union of that subfamily is the same as the
union of the same subfamily together with A. This means that a measurement system that is able to
uniquely determine a group of k infected individuals must be k − 1-disjunct.

7.2 Some Coding Theory and the proof of Theorem 7.3

In this section we (very) briefly introduce error-correcting codes and use Reed-Solomon codes to prove
Theorem 7.3. We direct the reader to [GRS15] for more on the subject.

Lets say Alice wants to send a message to Bob but they can only communicate through a channel
that erases or replaces some of the letters in Alice’s message. If Alice and Bob are communicating with
an alphabet Σ and can send messages with lenght N they can pre-decide a set of allowed messages
(or codewords) such that even if a certain number of elements of the codeword gets erased or replaced
there is no risk for the codeword sent to be confused with another codeword. The set C of codewords
(which is a subset of ΣN ) is called the codebook and N is the blocklenght.

If every two codewords in the codebook differs in at least d coordinates, then there is no risk of
confusion with either up to d − 1 erasures or up to bd−1

2 c replacements. We will be interested in
codebooks that are a subset of a finite field, meanign that we will take Σ to be Fq for q a prime power
and C to be a linear subspace of Fq.

The dimension of the code is given by

m = logq |C|,

and the rate of the code by
m

R = .
N

Given two code words c1, c2 the Hamming distance ∆(c1, c2) is the number of entries where they
differ. The distance of a code is defined as

d = min ∆(c1, c2).
c1 6=c2∈C

For linear codes, it is the same as the minimum weight

ω(C) = min ∆(c).
c∈C\{0}
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We say that a linear code C is a [N,m, d]q code (where N is the blocklenght, m the dimension, d
the distance, and Fq the alphabet.

One of the main goals of the theory of error-correcting codes is to understand the possible values
of rates, distance, and q for which codes exist. We simply briefly mention a few of the bounds and
refer the reader to [GRS15]. An important parameter is given by the entropy function:

log(q 1)
Hq(x) = x

−
log q

− x log x

log q
− (1− x)

log(1− x)
.

log q

• Hamming bound follows essentially by noting that if a code has distance d then balls of radius
bd−1

2 c centered at codewords cannot intersect. It says that

R ≤ 1−Hq

(
1

2

d
+

N

)
o(1)

• Another particularly simple bound is Singleton bound (it can be easily proven by noting that
the first n+ d+ 2 of two codewords need to differ in at least 2 coordinates)

d
R ≤ 1− + o(1).

N

There are probabilistic constructions of codes that, for any ε > 0, satisfy

R ≥ 1−Hq

(
d

N

)
− ε.

This means that R∗ the best rate achievable satisties

R∗ ≥ 1−Hq

(
d

,
N

)
(65)

known as the GilbertVarshamov (GV) bound [Gil52, Var57]. Even for q = 2 (corresponding to binary
codes) it is not known whether this bound is tight or not, nor are there deterministic constructions
achieving this Rate. This motivates the following problem.

Open Problem 7.1 1. Construct an explicit (deterministic) binary code (q = 2) satisfying the
GV bound (65).

2. Is the GV bound tight for binary codes (q = 2)?

7.2.1 Boolean Classification

A related problem is that of Boolean Classification [AABS15]. Let us restrict our attention to In
error-correcting codes one wants to build a linear codebook that does not contain a codeword with
weight ≤ d − 1. In other words, one wants a linear codebook C that does intersect B(d − 1) = {x ∈
{0, 1}n : 0 < ∆(x) ≤ d− 1} the pinched Hamming ball of radius d (recall that ∆(d) is the Hamming
weight of x, meaning the number of non-zero entries). In the Boolean Classification problem one is
willing to confuse two codewords as long as they are sufficiently close (as this is likely to mean they are
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in the same group, and so they are the same from the point of view of classification). The objective
then becomes understanding what is the largest possible rate of a codebook that avoids an Annulus
A(a, b) = {x ∈ {0, 1}n : a ≤ ∆(x) ≤ b}. We refer the reader to [AABS15] for more details. Let us call
that rate

RA
∗ (a, b, n).

Note that RA
∗ ((1, d−1, n) corresponds to the optimal rate for a binary error-correcting code, conjectured

to be 1−H d
q (TheN

)
GV bound).

Open Problem 7.2 It is conjectured in [AABS15] (Conjecture 3 in [AABS15]) that the optimal rate
in this case is given by

RA
∗ (αn, βn, n) = α+ (1− α)RA

∗ (1, βn, (1− α)) + o(1),

where o(1) goes to zero as n goes to infinity.
This is established in [AABS15] for β ≥ 2α but open in general.

7.2.2 The proof of Theorem 7.3

Reed-Solomon codes[RS60] are [n,m, n − m + 1]q codes, for m ≤ n ≤ q. They meet the Singleton
bound, the drawback is that they have very large q (q > n). We’ll use their existence to prove
Theorem 7.3
Proof. [of Theorem 7.3]

We will construct a family A of sets achieving the upper bound in Theorem 7.3. We will do this
by using a Reed-Solomon code [q,m, q−m+1]q. This code has qm codewords. To each codework c we
will correspond a binary vector a of length q2 where the i-th q-block of a is the indicator of the value
of c(i). This means that a is a vector with exactly q ones (and a total of q2 entries)32. We construct
the family A for T = q2 and n = qm (meaning qm subsets of q2 ) by constructing, for each codeword
c, the set of non-zero entries of the corresponding binary vector a.

These sets have the following properties,

[ ]

min
j∈[n]
|Aj | = q,

and
max |Aj
6 ∈ 1 Aj2 = q min ∆(c1, c2) q (q m+ 1) = m 1.

j1=j2 [n]
∩ | −

c1=6 c2∈C
≤ − − −

This readily implies that A is k-disjunct for

k =

⌊
q − 1

,
m− 1

⌋
because the union of

⌊
q−1
m−1

⌋
sets can only contain (m− 1)

⌊
q−1
m−1

⌋
< q elements of another set.

Now we pick q ≈ 2k logn (q has to be a prime but there is always a prime between this number andlog k

its double by Bertrand’s postulate (see [?] for a particularly nice proof)). Then m = logn (it can belog q
taken to be the ceiling of this quantity and then n gets updated accordingly by adding dummy sets).

32This is precisely the idea of code concatenation [GRS15]
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This would give us a family (for large enough parameters) that is k-disjunct for⌊
q − 1

m− 1

⌋
≥

⌊
2k logn

log k − 1

logn
log q + 1− 1

⌋

=

⌊
2k

log q log q

log k
−

log n

⌋
≥ k.

Noting that

T ≈
(

log n
2k

2

log k

)
.

concludes the proof. 2

7.3 In terms of linear Bernoulli algebra

We can describe the process above in terms of something similar to a sparse linear system. let 1Ai be
the t − dimensional indicator vector of Ai, 1i:n be the (unknown) n−dimensional vector of infected
soldiers and 1t:T the T−dimensional vector of infected (positive) tests. Then

| |
1A 1A

 
1 · · · n

 |
|

⊗
|

 |
1  =

|

  1

 ,
where is


 i:n


|  t:T

|
|

⊗ matrix-vector multiplication in the Bernoulli algebra, basically the only thing that is
different from the standard matrix-vector multiplications is that the addition operation is replaced by
binary “or”, meaning 1⊕ 1 = 1.

This means that we are essentially solving a linear system (with this non-standard multiplication).
Since the number of rows is T = O(k2 log(n/k)) and the number or columns n � T the system is
underdetermined. Note that the unknown vector, 1i:n has only k non-zero components, meaning it
is k−sparse. Interestingly, despite the similarities with the setting of sparse recovery discussed in a

˜ ˜previous lecture, in this case, O(k2) measurements are needed, instead of O(k) as in the setting of
Compressed Sensing.

7.3.1 Shannon Capacity

The goal Shannon Capacity is to measure the amount of information that can be sent through a noisy
channel where some pairs of messages may be confused with eachother. Given a graph G (called
the confusion graph) whose vertices correspond to messages and edges correspond to messages that
may be confused with each other. A good example is the following: say one has a alphabet of five
symbols 1, 2, 3, 4, 5 and that each digit can be confused with the immediately before and after (and
1 and 5 can be confused with eachother). The confusion graph in this case is C5, the cyclic graph
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on 5 nodes. It is easy to see that one can at most send two messages of one digit each without
confusion, this corresponds to the independence number of C5, α(C5) = 2. The interesting question
arises when asking how many different words of two digits can be sent, it is clear that one can send at
least α(C5)2 = 4 but the remarkable fact is that one can send 5 (for example: “11”,“23”,“35”,“54”,
or “42”). The confusion graph for the set of two digit words C⊕2

5 can be described by a product of
the original graph C5 where for a graph G on n nodes G⊕2 is a graph on n nodes where the vertices
are indexed by pairs ij of vertices of G and

(ij, kl) ∈ E G⊕2

if both a) i = k or i, k =

)
∈ E and b) j l or j, l

(
∈ E hold.

The above observation can then be written as α C⊕2
5 = 5. This motivates the definition of

Shannon Capacity [Sha56]

( )
θS (G) sup

k

(
G⊕k

) 1
k
.

Lovasz, in a remarkable paper [Lov79], showed that θS (C5) =
√

5, but determining this quantity is
an open problem for many graphs of interested [AL06], including C7.

Open Problem 7.3 What is the Shannon Capacity of the 7 cycle?

7.3.2 The deletion channel

In many applications the erasures or errors suffered by the messages when sent through a channel are
random, and not adversarial. There is a beautiful theory understanding the amount of information
that can be sent by different types of noisy channels, we refer the reader to [CT] and references therein
for more information.

A particularly challenging channel to understand is the deletion channel. The following open
problem will envolve a particular version of it. Say we have to send a binary string “10010” through
a deletion channel and the first and second bits get deleted, then the message receive would be “010”
and the receiver would not know which bits were deleted. This is in contrast with the erasure channel
where bits are erased but the receiver knows which bits are missing (in the case above the message
received would be “??010”). We refer the reader to this survey on many of the interesting questions
(and results) regarding the Deletion channel [Mit09].

A particularly interesting instance of the problem is the Trace Reconstruction problem, where the
same message is sent multiple times and the goal of the receiver is to find exactly the original message
sent from the many observed corrupted version of it. We will be interested in the following quantity:
Draw a random binary string (with)n bits, suppose the channel has a deletion probability of 1 for each2
bit (independently), define D n; 1 has the number of times the receiver needs to receive the message2
(with independent corruptions)( ) so that she can decode the message exactly, with high probability.
It is easy to see that D n; 1 ≤ 2n, since roughly once in every 2n times the whole message will go2 √
through the channel unharmed. It is possible to show (see [HMPW]) that D

(
n; 1

2
known whether this bound is tight.

)
≤ 2 n but it is not

Open Problem 7.4 1. What are the asymptotics of D
(
n; 1

2

)
?
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2. An interesting aspect of the Deletion Channel is that different messages may have different
difficulties of decoding. This motivates the following question: What are the two (distinct)
binary sequences x(2) and x(2) that are more difficult to distinguish (let’s say that the receiver
knows that either x(1) or x(2) was sent but not which)?
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