
10 Synchronization Problems and Alignment

10.1 Synchronization-type problems

This section will focuses on synchronization-type problems.36 These are problems where the goal
is to estimate a set of parameters from data concerning relations or interactions between pairs of
them. A good example to have in mind is an important problem in computer vision, known as
structure from motion: the goal is to build a three-dimensional model of an object from several
two-dimensional photos of it taken from unknown positions. Although one cannot directly estimate
the positions, one can compare pairs of pictures and gauge information on their relative positioning.
The task of estimating the camera locations from this pairwise information is a synchronization-type
problem. Another example, from signal processing, is multireference alignment, which is the problem
of estimating a signal from measuring multiple arbitrarily shifted copies of it that are corrupted with
noise.

We will formulate each of these problems as an estimation problem on a graph G = (V,E). More
precisely, we will associate each data unit (say, a photo, or a shifted signal) to a graph node i ∈ V . The
problem can then be formulated as estimating, for each node i ∈ V , a group element gi ∈ G, where the
group G is a group of transformations, such as translations, rotations, or permutations. The pairwise
data, which we identify with edges of the graph (i, j) ∈ E, reveals information about the ratios gi(gj)

−1.
In its simplest form, for each edge (i, j) ∈ E of the graph, we have a noisy estimate of gi(g

1
j)
− and

the synchronization problem consists of estimating the individual group elements g : V → G that are
the most consistent with the edge estimates, often corresponding to the Maximum Likelihood (ML)
estimator. Naturally, the measure of “consistency” is application specific. While there is a general
way of describing these problems and algorithmic approaches to them [BCS15, Ban15a], for the sake
of simplicity we will illustrate the ideas through some important examples.

10.2 Angular Synchronization

The angular synchronization problem [Sin11, BSS13] consist in estimating n unknown angles θ1, . . . , θn
from m noisy measurements of their offsets θi− θj mod 2π. This problem easily falls under the scope
of synchronization-type problem by taking a graph with a node for each θi, an edge associated with
each measurement, and taking the group to be G ∼= SO(2), the group of in-plane rotations. Some of its
applications include time-synchronization of distributed networks [GK06], signal reconstruction from
phaseless measurements [ABFM12], surface reconstruction problems in computer vision [ARC06] and
optics [RW01].

Let us consider a particular instance of this problem (with a particular noise model).
Let z1, . . . , zn ∈ C satisfying |za| = 1 be the signal (angles) we want to estimate (za = exp(iθa)).

Suppose for every pair (i, j) we make a noisy measurement of the angle offset

Yij = zizj + σWij ,

where Wij ∼ N (0, 1). The maximum likelihood estimator for z is given by solving (see [Sin11, BBS14])

max x∗Y x. (103)
|xi|2=1

36And it will follow somewhat the structure in Chapter 1 of [Ban15a]
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Figure 22: Given a graph G = (V,E) and a group G, the goal in synchronization-type problems is to
estimate node labels g : V → G from noisy edge measurements of offsets gig

−1
j .

There are several approaches to try to solve (103). Using techniques very similar to the study
of the spike model in PCA on the first lecture one can (see [Sin11]), for example, understand the
performance of the spectral relaxation of (103) into

max x∗Y x. (104)
‖x‖2=n

Notice that, since the solution to (104) will not necessarily be a vector with unit-modulus entries,
a rounding step will, in general, be needed. Also, to compute the leading eigenvector of A one would
likely use the power method. An interesting adaptation to this approach is to round after each iteration
of the power method, rather than waiting for the end of the process, more precisely:

Algorithm 10.1 Given Y . Take a original (maybe random) vector x(0). For each iteration k (until
convergence or a certain number of iterations) take x(k+1) to be the vector with entries:

(
x(k+1)

)
=

i

(
Y x(k)

)
i

metho

∣ .
i

this

∣(Y x(k)

Although d appears to perform very well in n

)
umeric

∣∣
experiments, its analysis is still an

open problem.

Open Problem 10.1 In the model where Y = zz∗ + σW as described above, for which values of σ
will the Projected Power Method (Algorithm 10.1) converge to the optimal solution of (103) (or at
least to a solution that correlates well with z), with high probability?37

37We thank Nicolas Boumal for suggesting this problem.
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Figure 23: An example of an instance of a synchronization-type problem. Given noisy rotated copies
of an image (corresponding to vertices of a graph), the goal is to recover the rotations. By comparing
pairs of images (corresponding to edges of the graph), it is possible to estimate the relative rotations
between them. The problem of recovering the rotation of each image from these relative rotation
estimates is an instance of Angular synchronization.

We note that Algorithm 10.1 is very similar to the Approximate Message Passing method presented,
and analyzed, in [MR14] for the positive eigenvector problem.

Another approach is to consider an SDP relaxation similar to the one for Max-Cut and minimum
bisection.

max Tr(Y X)

s.t. Xii = 1,∀i (105)

X � 0.

˜In [BBS14] it is shown that, in the model of Y = zz∗zz∗+ σW , as long as σ = O(n1/4) then (105)
is tight, meaning that the optimal solution is rank 1 and thus it corresponds to the optimal solution
of (103).38. It is conjecture [BBS14] however that σ = Õ(n1/2) should suffice. It is known (see [BBS14])
that this is implied by the following conjecture:

If x\ ˜is the optimal solution to (103), then with high probability ‖Wx\‖ = ).∞ O(n1/2 This is the
content of the next open problem.

Open Problem 10.2 Prove or disprove: With high probability the SDP relaxation (105) is tight as
˜ ˜long as σ = O(n1/2). This would follow from showing that, with high probability ‖Wx\‖ = O(n1/2),∞

where x\ is the optimal solution to (103).

38Note that this makes (in this regime) the SDP relaxation a Probably Certifiably Correct algorithm [Ban15b]
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Figure 24: Illustration of the Cryo-EM imaging process: A molecule is imaged after being frozen
at a random (unknown) rotation and a tomographic 2-dimensional projection is captured. Given a
number of tomographic projections taken at unknown rotations, we are interested in determining such
rotations with the objective of reconstructing the molecule density. Images courtesy of Amit Singer
and Yoel Shkolnisky [SS11].

We note that the main difficulty seems to come from the fact that W and x\ are not independent
random variables.

10.2.1 Orientation estimation in Cryo-EM

A particularly challenging application of this framework is the orientation estimation problem in
Cryo-Electron Microscopy [SS11].

Cryo-EM is a technique used to determine the three-dimensional structure of biological macro-
molecules. The molecules are rapidly frozen in a thin layer of ice and imaged with an electron micro-
scope, which gives 2-dimensional projections. One of the main difficulties with this imaging process is
that these molecules are imaged at different unknown orientations in the sheet of ice and each molecule
can only be imaged once (due to the destructive nature of the imaging process). More precisely, each
measurement consists of a tomographic projection of a rotated (by an unknown rotation) copy of the
molecule. The task is then to reconstruct the molecule density from many such measurements. As
the problem of recovering the molecule density knowing the rotations fits in the framework of classical
tomography—for which effective methods exist— the problem of determining the unknown rotations,
the orientation estimation problem, is of paramount importance. While we will not go into details
here, there is a mechanism that, from two such projections, obtains information between their ori-
entation. The problem of finding the orientation of each projection from such pairwise information
naturally fits in the framework of synchronization and some of the techniques described here can be
adapted to this setting [BCS15].
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10.2.2 Synchronization over Z2

This particularly simple version already includes many applications of interest. Similarly to before,
given a graph G = (V,E), the goal is recover unknown node labels g : V → Z2 (corresponding to
memberships to two clusters) from pairwise information. Each pairwise measurement either suggests
the two involved nodes are in the same cluster or in different ones (recall the problem of recovery in
the stochastic block model). The task of clustering the graph in order to agree, as much as possible,
with these measurements is tightly connected to correlation clustering [BBC04] and has applications
to determining the orientation of a manifold [SW11].

In the case where all the measurements suggest that the involved nodes belong in different com-
munities, then this problem essentially reduces to the Max-Cut problem.

10.3 Signal Alignment

In signal processing, the multireference alignment problem [BCSZ14] consists of recovering an unknown
signal u ∈ RL from n observations of the form

yi = Rliu+ σξi, (106)

where Rli is a circulant permutation matrix that shifts u by li ∈ ZL coordinates, ξi is a noise vector
(which we will assume standard gaussian i.i.d. entries) and li are unknown shifts.

If the shifts were known, the estimation of the signal u would reduce to a simple denoising problem.
For that reason, we will focus on estimating the shifts {li}ni=1. By comparing two observations yi and
yj we can obtain information about the relative shift li − lj mod L and write this problem as a
Synchronization problem

10.3.1 The model bias pitfall

In some of the problems described above, such as the multireference alignment of signals (or the orien-
tation estimation problem in Cryo-EM), the alignment step is only a subprocedure of the estimation
of the underlying signal (or the 3d density of the molecule). In fact, if the underlying signal was
known, finding the shifts would be nearly trivial: for the case of the signals, one could simply use
match-filtering to find the most likely shift li for measurement yi (by comparing all possible shifts of
it to the known underlying signal).

When the true signal is not known, a common approach is to choose a reference signal z that is not
the true template but believed to share some properties with it. Unfortunately, this creates a high risk
of model bias: the reconstructed signal û tends to capture characteristics of the reference z that are
not present on the actual original signal u (see Figure 10.3.1 for an illustration of this phenomenon).
This issue is well known among the biological imaging community [SHBG09, Hen13] (see, for example,
[Coh13] for a particularly recent discussion of it). As the experiment shown on Figure 10.3.1 suggests,
the methods treated in this paper, based solely on pairwise information between observations, do not
suffer from model bias as they do not use any information besides the data itself.

In order to recover the shifts li from the shifted noisy signals (106) we will consider the following
estimator

argminl1,...,ln L

∑ ∥∥R liyi −
2

R y∈Z − −lj j

i,j∈[n]

∥∥ , (107)
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Figure 25: A simple experiment to illustrate the model bias phenomenon: Given a picture of the
mathematician Hermann Weyl (second picture of the top row) we generate many images consisting
of random rotations (we considered a discretization of the rotations of the plane) of the image with
added gaussian noise. An example of one such measurements is the third image in the first row. We
then proceeded to align these images to a reference consisting of a famous image of Albert Einstein
(often used in the model bias discussions). After alignment, an estimator of the original image was
constructed by averaging the aligned measurements. The result, first image on second row, clearly
has more resemblance to the image of Einstein than to that of Weyl, illustration the model bias issue.
One the other hand, the method based on the synchronization approach produces the second image of
the second row, which shows no signs of suffering from model bias. As a benchmark, we also include
the reconstruction obtained by an oracle that is given the true rotations (third image in the second
row).

which is related to the maximum likelihood estimator of the shifts. While we refer to [Ban15a] for a
derivation we note that it is intuitive that if li is the right shift for yi and lj for yj then R−liyi−R−ljyj
should be random gaussian noise, which motivates the estimator considered.

Since a shift does not change the norm of a vector, (107) is equivalent to

argmax
∑
〈R−liyi, R−ljyj , (108)

l1,...,ln∈ZL
〉

i,j∈[n]

we will refer to this estimator as the quasi-MLE.
It is not surprising that solving this problem is NP-hard in general (the search space for this

optimization problem has exponential size and is nonconvex). In fact, one can show [BCSZ14] that,
conditioned on the Unique Games Conjecture, it is hard to approximate up to any constant.
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10.3.2 The semidefinite relaxation

We will now present a semidefinite relaxation for (108) (see [BCSZ14]).
Let us identify Rl with the L×L permutation matrix that cyclicly permutes the entries fo a vector

by li coordinates: 
1

 u
  u1−l

. .Rl . = .. .


uL uL−l


.

This corresponds to an L-dimensional represen


tation

 
of the cyclic


group. Then, (108) can be rewritten:∑

〈R−liyi, R−ljyj〉 =
∑

T(R−liyi) R−ljyj
i,j∈[n] i,j∈[n]

=

i,j

∑
Tr

∈[n]

[
T(R−liyi) R−ljyj

]
=

∑
Tr
[
yTRTi −l Ri −ljyj

i,j∈[n]

]
=

∑
Tr
[(
y yTi j

)T
R T
liRlj

i,j∈[n]

]
.

We take

X =


Rl1


 Rl2 nL nL . RT T

. l RTl Rl R × , (109)

.

l

 [
1 2

· · ·
n

R

 ] ∈

n

and can rewrite (108) as

max Tr(CX)
s. t. Xii = IL×L

Xij is a circulant permutation matrix (110)
X � 0
rank(X) ≤ L,

where C is the rank 1 matrix given by

y
C


y 1

=
 2

..


.
yn

 [ T T T
]

nL nL

T

  y1 y2 · · · yn ∈ R × , (111)

with blocks Cij = yiyj .
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The constraints Xii = IL L and rank(X) ≤ L imply that rank(X) = L and X× ij ∈ O(L). Since the
only doubly stochastic matrices in O(L) are permutations, (110) can be rewritten as

max Tr(CX)
s. t. Xii = IL×L

Xij1 = 1
Xij is circulant (112)
X ≥ 0
X � 0
rank(X) ≤ L.

Removing the nonconvex rank constraint yields a semidefinite program, corresponding to (??),

max Tr(CX)
s. t. Xii = IL×L

Xij1 = 1
(113)

Xij is circulant
X ≥ 0
X � 0.

Numerical simulations (see [BCSZ14, BKS14]) suggest that, below a certain noise level, the semidef-
inite program (113) is tight with high probability. However, an explanation of this phenomenon
remains an open problem [BKS14].

Open Problem 10.3 For which values of noise do we expect that, with high probability, the semidef-
inite program (113) is tight? In particular, is it true that for any σ by taking arbitrarily large n the
SDP is tight with high probability?

10.3.3 Sample complexity for multireference alignment

Another important question related to this problem is to understand its sample complexity. Since
the objective is to recover the underlying signal u, a larger number of observations n should yield
a better recovery (considering the model in (??)). Another open question is the consistency of the
quasi-MLE estimator, it is known that there is some bias on the power spectrum of the recovered
signal (that can be easily fixed) but the estimates for phases of the Fourier transform are conjecture
to be consistent [BCSZ14].

Open Problem 10.4 1. Is the quasi-MLE (or the MLE) consistent for the Multireference align-
ment problem? (after fixing the power spectrum appropriately).

2. For a given value of L and σ, how large does n need to be in order to allow for a reasonably
accurate recovery in the multireference alignment problem?

Remark 10.2 One could design a simpler method based on angular synchronization: for each pair
of signals take the best pairwise shift and then use angular synchronization to find the signal shifts
from these pairwise measurements. While this would yield a smaller SDP, the fact that it is not
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using all of the information renders it less effective [BCS15]. This illustrates an interesting trade-off
between size of the SDP and its effectiveness. There is an interpretation of this through dimensions of
representations of the group in question (essentially each of these approaches corresponds to a different
representation), we refer the interested reader to [BCS15] for more one that.
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