
1 Principal Component Analysis in High Dimensions and the Spike
Model

1.1 Dimension Reduction and PCA

When faced with a high dimensional dataset, a natural approach is to try to reduce its dimension,
either by projecting it to a lower dimension space or by finding a better representation for the data.
During this course we will see a few different ways of doing dimension reduction.

We will start with Principal Component Analysis (PCA). In fact, PCA continues to be one of the
best (and simplest) tools for exploratory data analysis. Remarkably, it dates back to a 1901 paper by
Karl Pearson [Pea01]!

Let’s say we have n data points x1, . . . , xn in Rp, for some p, and we are interested in (linearly)
projecting the data to d < p dimensions. This is particularly useful if, say, one wants to visualize
the data in two or three dimensions. There are a couple of different ways we can try to choose this
projection:

1. Finding the d-dimensional affine subspace for which the projections of x1, . . . , xn on it best
approximate the original points x1, . . . , xn.

2. Finding the d dimensional projection of x1, . . . , xn that preserved as much variance of the data
as possible.

As we will see below, these two approaches are equivalent and they correspond to Principal Com-
ponent Analysis.

Before proceeding, we recall a couple of simple statistical quantities associated with x1, . . . , xn,
that will reappear below.

Given x1, . . . , xn we define its sample mean as

µn =
1 ∑n

xk, (4)
n
k=1

and its sample covariance as

1
Σn = (

n

∑n
xk (xk

1
− µn) − Tµ

− n) . (5)
k=1

Remark 1.1 If x1, . . . , xn are independently sampled from a distribution, µn and Σn are unbiased
estimators for, respectively, the mean and covariance of the distribution.

We will start with the first interpretation of PCA and then show that it is equivalent to the second.

1.1.1 PCA as best d-dimensional affine fit

We are trying to approximate each xk by

d

xk ≈ µ+
∑

(βk)i vi, (6)
i=1
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where v1, . . . , vd is an orthonormal basis for the d-dimensional subspace, µ ∈ Rp represents the transla-
tion, and βk corresponds to the coefficients of xk. If we represent the subspace by V = [v p

1 · · · vd] ∈ R ×d

then we can rewrite (7) as
xk ≈ µ+ V βk, (7)

where V TV = Id×d as the vectors vi are orthonormal.
We will measure goodness of fit in terms of least squares and attempt to solve

min
∑n
‖ 2xk − (µ+ V βk)

µ, V, βk
‖2 (8)

T k=1V V=I

We start by optimizing for µ. It is easy to see that the first order conditions for µ correspond to

n

∇µ
∑ n

‖xk − (µ+ V βk)‖22 = 0⇔
∑

(xk − (µ+ V βk)) = 0.
k=1 k=1

Thus, the optimal value µ∗ of µ satisfies(∑n n

xk − nµ∗ − V
∑

βk = 0.
k=1 k=1

Because
∑n

k=1 βk = 0 we have that the optimal µ is given by

n
1

µ∗ =
∑

xk = µn,
n
k=1

the sample mean.
We can then proceed on finding the solution for (9) by solving

n

min k µn V
V, βk

‖x − − βk‖22 . (9)

V T k=1V=I

∑
Let us proceed by optimizing for βk. Since the problem decouples for each k, we can focus on, for

each k,
2d

2min ‖xk − µn − V βk‖2 = min

∥∥
xk − µn (

β
− . (10)

k β

∑
βk)i vi

k
i=1

∥∥
2

Since v1, . . . , v

∥∥ ∥∥
d are orthonormal, it is easy to see that

∥
the solution is given

∥
by (βk

∗) = vTi (xk − µn)i
which can be succinctly written as β T

k = V (xk − µn). Thus, (9) is equivalent to

∑n
min n)
V TV=I

∥∥(xk − µ − 2
V V T (xk − µn)

k=1

∥∥ . (11)
2
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Note that ∥∥(xk − µn)− V V T (xk −
2 Tµn)
∥∥ = (xk2

− µn) (xk − µn)

−2 (xk − Tµn) V V T( (x)k µ
T

− n)

+ (x − µ ) V V TV V T
k n (xk − µn)

= (xk − Tµn) (xk − µn)

− (xk − Tµn) V V T (xk − µn) .

Since (xk − Tµn) (xk − µn) does not depend on V , minimizing (9) is equivalent to

n
Tmax

∑
(xk − µn) V V T (xk − µn) . (12)

V TV=I
k=1

A few more simple algebraic manipulations using properties of the trace:

∑n n
T T(xk − µn) V V T (xk − µn) =

∑
Tr
[
(x V V T
k − µn) (xk − µn)

k=1 k=1
n

]
=

∑
− TTr

[
V T (xk µn) (xk − µn) V

k=1

]
= Tr

[
n

V T
∑

(xk − Tµn) (xk − µn) V
k=1

]
= (n− 1) Tr

[
V TΣnV

y

]
.

This means that the solution to (13) is given b

max Tr
[
V TΣnV .

V TV=I

]
(13)

As we saw above (recall (2)) the solution is given by V = [v1, · · · , vd] where v1, . . . , vd correspond
to the d leading eigenvectors of Σn.

Let us first show that interpretation (2) of finding the d-dimensional projection of x1, . . . , xn that
preserves the most variance also arrives to the optimization problem (13).

1.1.2 PCA as d-dimensional projection that preserves the most variance

We aim to find an orthonormal basis v1, . . . , v
T

d (organized as V = [v1, . . . , vd] with V V = Id×d) of
a d-dimensional space such that the projection of x1, . . . , xn projected on this subspace has the most
variance. Equivalently we can ask for the points vT 1 xk

.

n

 ..
vTd xk

 ,

k=1
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to have as much variance as possible. Hence, we are interested in solving

1
max

∑n ∥∥∥ ∑ 2n∥V T T∥ xk − V xr .
V TV=I n

k=1 r=1

∥∥∥∥ (14)

Note that ∑ 2n n

∥
∥∥∥ n∥ 1 2T∥V Tx T T

k −
∑

V xr

∥∥
=
∑

V (xk − µn) = Tr V ΣnV ,
n

k=1 r=1 k=1

showing that (14) is equivalent to (13) and

∥∥
that the

∥∥
two interpretations

∥∥
of

(
PCA

)∥
are indeed equivalent.

1.1.3 Finding the Principal Components

When given a dataset x1, . . . , xn ∈ Rp, in order to compute the Principal Components one needs to
find the leading eigenvectors of

n
1 TΣn = (
−

∑
xk µ

n 1
− n) (xk − µn) .

k=1

A naive way of doing this would be to construct Σn (which takes O(np2) work) and then finding its
spectral decomposition (which takes O(p3) work). This means that the computational complexity of
this procedure is max np2, p3 (see [HJ85] and/or [Gol96]).O

( { })
An alternative is to use the Singular Value Decomposition (1). Let X = [x1 · · ·xn] recall that,

1
Σn =

(
X − T

µ T T
n1 X − µn1 .

n

Let us take the SVD of X − µ 1T = U DUT with

) ( )
n L R UL ∈ O(p), D diagonal, and UTRUR = I. Then,

1 T
Σn =

(
X − µ 1T

) (
X − µ 1T

)
= U DUTU DUT = U D2 T

n n L R R L L U
n L ,

meaning that UL correspond to the eigenvectors of Σ T
n. Computing the SVD of X − µn1 takes

O(minn2p, p2n) but if one is interested in simply computing the top d eigenvectors then this compu-
tational costs reduces to O(dnp). This can be further improved with randomized algorithms. There
are randomized algorithms that compute an approximate solution in

1
O
(
pn log d+ (p+ n)d2

)
time

(see for example [HMT09, RST09, MM15]).

1.1.4 Which d should we pick?

Given a dataset, if the objective is to visualize it then picking d = 2 or d = 3 might make the
most sense. However, PCA is useful for many other purposes, for example: (1) often times the data
belongs to a lower dimensional space but is corrupted by high dimensional noise. When using PCA
it is oftentimess possible to reduce the noise while keeping the signal. (2) One may be interested
in running an algorithm that would be too computationally expensive to run in high dimensions,

1If there is time, we might discuss some of these methods later in the course.
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dimension reduction may help there, etc. In these applications (and many others) it is not clear how
to pick d.

(+)
If we denote the k-th largest eigenvalue of Σn as λ (Σk n), then the k-th principal component has
(+)
λ (Σ

a n)k proportion of the variance. 2
Tr(Σn)
A fairly popular heuristic is to try to choose the cut-off at a component that has significantly more

variance than the one immediately after. This is usually visualized by a scree plot: a plot of the values
of the ordered eigenvalues. Here is an example:

It is common to then try to identify an “elbow” on the scree plot to choose the cut-off. In the
next Section we will look into random matrix theory to try to understand better the behavior of the
eigenvalues of Σn and it will help us understand when to cut-off.

1.1.5 A related open problem

We now show an interesting open problem posed by Mallat and Zeitouni at [MZ11]

Open Problem 1.1 (Mallat and Zeitouni [MZ11]) Let g ∼ N (0,Σ) be a gaussian random vector
in Rp with a known covariance matrix Σ and d < p. Now, for any orthonormal basis V = [v1, . . . , vp]
of Rp, consider the following random variable ΓV : Given a draw of the random vector g, ΓV is the
squared `2 norm of the largest projection of g on a subspace generated by d elements of the basis V .
The question is:

What is the basis V for which E [ΓV ] is maximized?

2Note that Tr (Σn) =
∑p
k=1 λk (Σn).
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The conjecture in [MZ11] is that the optimal basis is the eigendecomposition of Σ. It is known
that this is the case for d = 1 (see [MZ11]) but the question remains open for d > 1. It is not very
difficult to see that one can assume, without loss of generality, that Σ is diagonal.

A particularly intuitive way of stating the problem is:

1. Given Σ ∈ Rp×p and d

2. Pick an orthonormal basis v1, . . . , vp

3. Given g ∼ N (0,Σ)

4. Pick d elements ṽ1, . . . , ṽd of the basis

d 2
5. Score:

∑
i=1

(
ṽTi g

The objective is to pic

)
k the basis in order to maximize the expected value of the Score.

Notice that if the steps of the procedure were taken in a slightly different order on which step
4 would take place before having access to the draw of g (step 3) then the best basis is indeed
the eigenbasis of Σ and the best subset of the basis is simply the leading eigenvectors (notice the
resemblance with PCA, as described above).

More formally, we can write the problem as finding

  2
argmax E max vTi g ,
V ∈Rp×p

 
V TV=I


S [p
|S
⊂ ]


|=d

∑
i∈S

( ) 
where g ∼ N (0,Σ). The observation regarding the different ordering of the steps amounts to saying
that the eigenbasis of Σ is the optimal solution for

i g
)2

argmax max E
∑(

vT

.

p S⊂[p]V ∈Rp×
S| i=d ∈S

V TV=I |

 [ ]
1.2 PCA in high dimensions and Marcenko-Pastur

Let us assume that the data points x p
1, . . . , xn ∈ R are independent draws of a gaussian random

variable g ∼ N (0,Σ) for some covariance Σ ∈ Rp×p. In this case when we use PCA we are hoping
to find low dimensional structure in the distribution, which should correspond to large eigenvalues of
Σ (and their corresponding eigenvectors). For this reason (and since PCA depends on the spectral
properties of Σn) we would like to understand whether the spectral properties of Σn (eigenvalues and
eigenvectors) are close to the ones of Σ.

Since EΣn = Σ, if p is fixed and n→∞ the law of large numbers guarantees that indeed Σn → Σ.
However, in many modern applications it is not uncommon to have p in the order of n (or, sometimes,
even larger!). For example, if our dataset is composed by images then n is the number of images and
p the number of pixels per image; it is conceivable that the number of pixels be on the order of the
number of images in a set. Unfortunately, in that case, it is no longer clear that Σn → Σ. Dealing
with this type of difficulties is the realm of high dimensional statistics.
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For simplicity we will instead try to understand the spectral properties of

1
Sn = XXT .

n

Since x ∼ N (0,Σ) we know that µn → 0 (and, clearly, n
n−1 → 1) the spectral properties of Sn will be

essentially the same as Σn.3

Let us start by looking into a simple example, Σ = I. In that case, the distribution has no low
dimensional structure, as the distribution is rotation invariant. The following is a histogram (left) and
a scree plot of the eigenvalues of a sample of Sn (when Σ = I) for p = 500 and n = 1000. The red
line is the eigenvalue distribution predicted by the Marchenko-Pastur distribution (15), that we will
discuss below.

As one can see in the image, there are many eigenvalues considerably larger than 1 (and some
considerably larger than others). Notice that , if given this profile of eigenvalues of Σn one could
potentially be led to believe that the data has low dimensional structure, when in truth the distribution
it was drawn from is isotropic.

Understanding the distribution of eigenvalues of random matrices is in the core of Random Matrix
Theory (there are many good books on Random Matrix Theory, e.g. [Tao12] and [AGZ10]). This
particular limiting distribution was first established in 1967 by Marchenko and Pastur [MP67] and is
now referred to as the Marchenko-Pastur distribution. They showed that, if p and n are both going
to ∞ with their ratio fixed p/n = γ ≤ 1, the sample distribution of the eigenvalues of Sn (like the
histogram above), in the limit, will be

1
√

(γ+ − λ) (λ− γ )
dFγ(λ) =

−
1[γ2π γλ −,γ+](λ)dλ, (15)

3In this case, Sn is actually the Maximum likelihood estimator for Σ, we’ll talk about Maximum likelihood estimation
later in the course.
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with support [γ , γ+]. This is plotted as the red line in the figure above.−

Remark 1.2 We will not show the proof of the Marchenko-Pastur Theorem here (you can see, for
example, [Bai99] for several different proofs of it), but an approach to a proof is using the so-called
moment method. The core of the idea is to note that one can compute moments of the eigenvalue
distribution in two ways and note that (in the limit) for any k,

1
[( k1

) ]
1 ( ) p

1 ∑ ∫ γ+

ETr XXT = ETr Skn = E λk k
i (Sn) = λ dFγ(λ),

p n p p γi=1 −

and that the quantities 1ETr
[(

1XXT
)k]

can be estimated (these estimates rely essentially in combi-p n

natorics). The distribution dFγ(λ) can then be computed from its moments.

1.2.1 A related open problem

Open Problem 1.2 (Monotonicity of singular values [BKS13a]) Consider the setting above but
with p = n, then X ∈ Rn×n is a matrix with iid N (0, 1) entries. Let

σi

(
1√ X
n

)
,

denote the i-th singular value4 of √1 X, and define
n

1
αR(n) := E

[ ∑n (
1

σi √ X ,
n n
i=1

)]

as the expected value of the average singular value of √1 X.
n

The conjecture is that, for every n ≥ 1,

αR(n+ 1) ≥ αR(n).

Moreover, for the analogous quantity αC(n) defined over the complex numbers, meaning simply
that each entry of X is an iid complex valued standard gaussian CN (0, 1) the reverse inequality is
conjectured for all n ≥ 1:

αC(n+ 1) ≤ αC(n).

Notice that the singular values of √1 X are simply the square roots of the eigenvalues of Sn,
n

σi

(
1√ X

)
= λ

n

√
i (Sn).

4The i-th diagonal element of Σ in the SVD √1 X = UΣV .
n
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This means that we can compute αR in the limit (since we know the limiting distribution of λi (Sn))
and get (since p = n we have γ = 1, γ = 0, and γ− + = 2)

2
1 1 2

1 (2 λ)λ 8
lim αR(n) =

∫
λ 2dF1(λ) =

2π

∫
λ 2

→∞ 0

√
−

= 0.8488.
n 0 λ 3π

≈

Also, αR(1) simply corresponds to the expected value of the absolute value of a standard gaussian
g

2
αR(1) = E|g| =

√
π
≈ 0.7990,

which is compatible with the conjecture.
On the complex valued side, the Marchenko-Pastur distribution also holds for the complex valued

case and so limn αC(n) = lim→∞ n α→∞ R(n) and αC(1) can also be easily calculated and seen to be
larger than the limit.

1.3 Spike Models and BBP transition

What if there actually is some (linear) low dimensional structure on the data? When can we expect to
capture it with PCA? A particularly simple, yet relevant, example to analyse is when the covariance
matrix Σ is an identity with a rank 1 perturbation, which we refer to as a spike model Σ = I + βvvT ,
for v a unit norm vector and β ≥ 0.

One way to think about this instance is as each data point x consisting of a signal part
√
βg0v

where g0 is a one-dimensional standard gaussian (a gaussian multiple of a fixed vector
√
βv and a

noise part g ∼ N (0, I) (independent of g0. Then x = g +
√
βg0v is a gaussian random variable

x ∼ N (0, I + βvvT ).

A natural question is whether this rank 1 perturbation can be seen in Sn. Let us build some
intuition with an example, the following is the histogram of the eigenvalues of a sample of Sn for
p = 500, n = 1000, v is the first element of the canonical basis v = e1, and β = 1.5:
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The images suggests that there is an eigenvalue of Sn that “pops out” of the support of the
Marchenko-Pastur distribution (below we will estimate the location of this eigenvalue, and that es-
timate corresponds to the red “x”). It is worth noticing that the largest eigenvalues of Σ is simply
1 + β = 2.5 while the largest eigenvalue of Sn appears considerably larger than that. Let us try now
the same experiment for β = 0.5:

and it appears that, for β = 0.5, the distribution of the eigenvalues appears to be undistinguishable
from when Σ = I.

This motivates the following question:

Question 1.3 For which values of γ and β do we expect to see an eigenvalue of Sn popping out of the
support of the Marchenko-Pastur distribution, and what is the limit value that we expect it to take?

As we will see below, there is a critical value of β below which we don’t expect to see a change
in the distribution of eivenalues and above which we expect one of the eigenvalues to pop out of the
support, this is known as BBP transition (after Baik, Ben Arous, and Péché [BBAP05]). There are
many very nice papers about this and similar phenomena, including [Pau, Joh01, BBAP05, Pau07,
BS05, Kar05, BGN11, BGN12].5

In what follows we will find the critical value of β and estimate the location of the largest eigenvalue
of Sn. While the argument we will use can be made precise (and is borrowed from [Pau]) we will
be ignoring a few details for the sake of exposition. In short, the argument below can be
transformed into a rigorous proof, but it is not one at the present form!

First of all, it is not difficult to see that we can assume that v = e1 (since everything else is rotation
invariant). We want to understand the behavior of the leading eigenvalue of

n
1 1

Sn =
∑

x T
ix

n i = XXT ,
n

i=1

5Notice that the Marchenko-Pastur theorem does not imply that all eigenvalues are actually in the support of the
Marchenk-Pastur distribution, it just rules out that a non-vanishing proportion are. However, it is possible to show that
indeed, in the limit, all eigenvalues will be in the support (see, for example, [Pau]).
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where
X = [x1, . . . , xn] ∈ Rp×n.

We can write X as

X =

[ √
1 + βZT1
ZT

,
2

]
where Z1 ∈ Rn×1 and Z2 ∈ Rn×(p−1), both populated with i.i.d. standard gaussian entries (N (0, 1)).
Then,

1 1 β)ZTT

[
(1 + 1 Z

T
√ 1

√
1 + βZ

n = XX = 1 Z2S
n n 1 + βZT2 Z

T .
1 Z2 Z2

]
ˆNow, let λ and v =

[
v1

]
where v2 ∈ Rp−1 and v1 ∈ R, denote, respectively, an eigenvalue and

v2

associated eigenvector for Sn. By the definition of eigenvalue and eigenvector we have

1
[

(1 + β)ZT1 Z1
√

1 + βZT1 Z2 v1 ˆ= λ
n
√

1 + βZT2 Z1 ZT2 Z2

] [
v2

] [
v1

v2

]
,

which can be rewritten as

1 1 ˆ(1 + β)ZT1 Z1v1 +
√

1 + βZT1 Z2v2 = λv1 (16)
n n

1 1 ˆ1 + βZT2 Z1v1 + ZT
n 2 Z2v2 = λv2. (17)

n

(17) is equivalent to

√
1 1

1 + βZT2 Z1v1 =

(
λ̂ I− ZT

n n 2 Z2

)
v2.

ˆIf λ I− 1ZT2 Z2 is invertible (this w

√
on’t be justified here, but it is in [Pau]) then we can rewrite it asn ( 11 −

ˆv2 = λ I− ZT2 Z2

)
1√

1 + βZT2 Z1v1,
n n

which we can then plug in (16) to get

11 T 1 1 − 1ˆ ˆ(1 + β)Z1 Z1v1 +
√

1 + βZT1 Z2

(
λ I− ZT2 Z2

) √
1 + βZT =

n n 2 Z1v1 λv1
n n

If v1 = 0 (again, not properly justified here, see [Pau]) then this means that

11 1 1 − 1ˆ ˆλ = (1 + β)ZT1 Z1 +
√

1 + βZT1 Z2

(
λ I− ZT2 Z2

) √
1 + βZT (18)

n n n 2 Z1
n

First observation is that because Z1 ∈ Rn has standard gaussian entries then 1ZTn 1 Z1 → 1, meaning
that [

11 T

(
1 T

)− 1ˆ ˆλ = (1 + β) 1 + Z
n 1 Z2 λ I− Z T

n 2 Z2 Z
n 2 Z1

]
. (19)

20
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Consider the SVD of Z = UΣV T where U ∈ Rn×p and V ∈ Rp p
2

× have orthonormal columns
(meaning that UTU = Ip p and V TV = I 1 2

× p ),×p and Σ is a diagonal matrix. Take D = Σ thenn

1 1
ZT2 Z2 = V Σ2V T = V DV T ,

n n

meaning that the diagonal entries of D correspond to the eigenvalues of 1ZT2 Z2 which we expect ton
p 1be distributed (in the limit) according to the Marchenko-Pastur distribution for −
n ≈ γ. Replacing

back in (19)

1 T
ˆ ˆ

−1 1
λ = (1 + β)

[
1 + ZT 1/2 T T 1/2 T

n 1 λ −[
1

(√
nUD V I V DV

√
nUD V Z1

n
1

]
T ˆ= U V T

)( ) ( )
(1 + β) 1 TZ 2

1 D1/
−

+ λ I−V DV T V D1/2 UTZ1[ n

1 ( −
1

(
1

]
T

(
ˆ

)
= (1 + β) + UTZ

)
D1/2V T D1

(
) (

V
[
λ I−D

]
V T
)

V /2 UT

)
1 Z1

n

]
T

= (1 + β)

[
1

1 +
(
UTZ

) 1
D1/2 ˆ

1

([
λ I−D

])−
D1/2

(
UTZ1

)]
.

( )
n

Since the columns of U are orthonormal, g := UTZ1 ∈ Rp−1 is an isotropic gaussian (g ∼ N (0, 1)), in
fact,

EggT = EUTZ
(
UTZ

)T
= EUT T

1 1 Z1Z1 U = UTE
[
Z1Z

T T
1

]
U = U U = I(p−1)×(p .−1)

We proceed

λ̂ = (1 + β)

[
1

1 + gTD1/2
([

ˆ
−1

λ I−D
])

D1/2g

]

= (1 + β)

 n

p 1
−1

1 +
n

∑
g2 Djj
j
λ̂−Djjj=1



Because we expect the diagonal entries of D to be distributed


according to the Marchenko-Pastur

distribution and g to be independent to it we expect that (again, not properly justified here, see [Pau])

1 ∑p−1
j

g2 D j x

p− 1 j ˆ ˆλ−Djj

→
∫ γ+

dFγ(x).
γ λj=1 − − x

ˆWe thus get an equation for λ:

γ

λ̂ = (1 + β)

[
1 + γ

∫
+ x

dF (
ˆ γ x)

γ λ− − x

]
,

which can be easily solved with the help of a program that computes integrals symbolically (such as
Mathematica) to give (you can also see [Pau] for a derivation):

γ
λ̂ = (1 + β)

(
1 +

β

)
, (20)
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which is particularly elegant (specially considering the size of some the equations used in the deriva-
tion).

An important thing to notice is that for β =
√
γ we have

√
(

γ
λ̂ = (1 + γ) 1 + √

γ

)
= (1 +

√ 2γ) = γ+,

suggesting that β =
√
γ is the critical point.

Indeed this is the case and it is possible to make the above argument rigorous6 and show that in
the model described above,

• If β
√≤ γ then

λmax (Sn)→ γ+,

• and if β >
√
γ then

λmax (Sn)→ (1 + β)

(
γ

1 +
β

)
> γ+.

Another important question is wether the leading eigenvector actually correlates with the planted
perturbation (in this case e1). Turns out that very similar techniques can answer this question as
well [Pau] and show that the leading eigenvector vmax of Sn will be non-trivially correlated with e1 if
and only if β >

√
γ, more precisely:

• If β
√≤ γ then

|〈vmax, e1〉|2 → 0,

• and if β >
√
γ then

1 γ

|〈 2 β2

vmax, e1

−
〉| →

1− γ .
β

1.3.1 A brief mention of Wigner matrices

Another very important random matrix model is the Wigner matrix (and it will show up later in this
course). Given an integer n, a standard gaussian Wigner matrix W ∈ Rn×n is a symmetric matrix
with independent (0, 1) entries (except for the fact that Wij = Wji). In the limit, the eigenvalues
of √1

N
W are distributed according to the so-called semi-circular law

n

1
dSC(x) =

√
4− x21[ 2,2](x)dx,

2π −

and there is also a BBP like transition for this matrix ensemble [FP06]. More precisely, if v is a
unit-norm vector in Rn and ξ ≥ 0 then the largest eigenvalue of √1 W + ξvvT satisfies

n

6Note that in the argument above it wasn’t even completely clear where it was used that the eigenvalue was actually
the leading one. In the actual proof one first needs to make sure that there is an eigenvalue outside of the support and
the proof only holds for that one, you can see [Pau]
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• If ξ ≤ 1 then

λ

(
1√ W + ξvvTmax
n

)
→ 2,

• and if ξ > 1 then

λmax

(
1 1√ W + ξvvT

)
→ ξ + . (21)

n ξ

1.3.2 An open problem about spike models

Open Problem 1.3 (Spike Model for cut–SDP [MS15]. As since been solved [MS15]) Let
W denote a symmetric Wigner matrix with i.i.d. entries Wij ∼ N (0, 1). Also, given B ∈ Rn×n sym-
metric, define:

Q(B) = max {Tr(BX) : X � 0, Xii = 1} .

Define q(ξ) as
1 ξ 1

q(ξ) = lim EQ
n→∞ n

(
11T +

n
√ W
n

)
.

What is the value of ξ , defined as∗

ξ = inf∗ {ξ ≥ 0 : q(ξ) > 2}.

It is known that, if 0 ≤ ξ ≤ 1, q(ξ) = 2 [MS15].
One can show that 1Q(B)n ≤ λmax(B). In fact,

max {Tr(BX) : X � 0, Xii = 1} ≤ max {Tr(BX) : X � 0, TrX = n} .

It is also not difficult to show (hint: take the spectral decomposition of X) that{ ∑n
max Tr(BX) : X � 0, Xii = n

i=1

}
= λmax(B).

This means that for ξ > 1, q(ξ) ≤ ξ + 1 .ξ

Remark 1.4 Optimization problems of the type of max {Tr(BX) : X � 0, Xii = 1} are semidefinite
programs, they will be a major player later in the course!

Since 1ETr 11T ξ 11T + √1 W ξ.n n n
≈ ξ, by taking X = 11T we expect that q(ξ) ≥

These observ

[
ations

(
imply that 1

)]
≤ ξ < 2 (see [MS15]). A reasonable conjecture is that it is equal∗

to 1. This would imply that a certain semidefinite programming based algorithm for clustering under
the Stochastic Block Model on 2 clusters (we will discuss these things later in the course) is optimal
for detection (see [MS15]).7

Remark 1.5 We remark that Open Problem 1.3 as since been solved [MS15].

7Later in the course we will discuss clustering under the Stochastic Block Model quite thoroughly, and will see how
this same SDP is known to be optimal for exact recovery [ABH14, HWX14, Ban15c].
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