
3 Spectral Clustering and Cheeger’s Inequality

3.1 Clustering

Clustering is one of the central tasks in machine learning. Given a set of data points, the purpose of
clustering is to partition the data into a set of clusters where data points assigned to the same cluster
correspond to similar data points (depending on the context, it could be for example having small
distance to each other if the points are in Euclidean space).

3.1.1 k-means Clustering

One the most popular methods used for clustering is k-means clustering. Given x1, . . . , x
p

n ∈ R the
k-means clustering partitions the data points in clusters S1 ∪ · · · ∪ Sk with centers µ1, . . . , µk ∈ Rp as
the solution to:

k
2min xi µl . (25)

Spartition 1,...,Sk

∑
‖

1,...,µk i

∑
− ‖

µ l=1 ∈Si

41

Figure 13: The d = 2 example of the use of this method to the example described above, the value of
the nodes is given by color coding. For d = 2 it appears to smoothly interpolate between the labeled
points.

Note that, given the partition, the optimal centers are given by

1
µl = x

|Sl|
∑

i.
i∈Sl

Lloyd’s algorithm [Llo82] (also known as the k-means algorithm), is an iterative algorithm that
alternates between

• Given centers µ1, . . . , µk, assign each point xi to the cluster

l = argminl=1,...,k ‖xi − µl‖ .

• Update the centers µl = 1 x|Sl| i∈S i.
l

Unfortunately, Lloyd’s algorithm

∑
is not guaranteed to converge to the solution of (25). Indeed,

Lloyd’s algorithm oftentimes gets stuck in local optima of (25). A few lectures from now we’ll discuss
convex relaxations for clustering, which can be used as an alternative algorithmic approach to Lloyd’s
algorithm, but since optimizing (25) is NP -hard there is not polynomial time algorithm that works
in the worst-case (assuming the widely believed conjecture P 6= NP)

While popular, k-means clustering has some potential issues:

• One needs to set the number of clusters a priori (a typical way to overcome this issue is by trying
the algorithm for different number of clusters).

• The way (25) is defined it needs the points to be defined in an Euclidean space, oftentimes
we are interested in clustering data for which we only have some measure of affinity between
different data points, but not necessarily an embedding in Rp (this issue can be overcome by
reformulating (25) in terms of distances only).

42

Figure 14: The d = 3 example of the use of this method to the example described above, the value of
the nodes is given by color coding. For d = 3 the solution appears to only learn the label −1.

Figure 15: The d = 3 example of the use of this method with the extra regularization fTL2f to the
example described above, the value of the nodes is given by color coding. The extra regularization
seems to fix the issue of discontinuities.

• The formulation is computationally hard, so algorithms may produce suboptimal instances.

• The solutions of k-means are always convex clusters. This means that k-means may have diffi-
culty in finding cluster such as in Figure 17.

3.2 Spectral Clustering

A natural way to try to overcome the issues of k-means depicted in Figure 17 is by using Diffusion
Maps: Given(the data points we construct a weighted graph G = (V,E,W) using a kernel Kε, such as
Kε(u) = exp 1 u2

)
, by associating each point to a vertex and, for which pair of nodes, set the edge2ε

weight as
wij = Kε (‖xi − xj‖) .

43

Figure 16: Examples of points separated in clusters.

Recall the construction of a matrix M = D−1W as the transition matrix of a random walk

w
Prob { ij

X(t+ 1) = j|X(t) = i} = = Mij ,
deg(i)

where D is the diagonal with Dii = deg(i). The d-dimensional Diffusion Maps is given by

(d)
φt (i) =


t
2



where

 λ ϕ2(i)
...

λtd+1ϕd+1(i)

M

 ,
= ΦΛΨT where Λ is the diagonal matrix with the eigenvalues of M and Φ and Ψ are,

respectively, the right and left eigenvectors of M (note that they form a bi-orthogonal system, ΦTΨ =
I).

If we want to cluster the vertices of the graph in k clusters, then it is natural to truncate the
Diffusion Map to have k − 1 dimensions (since in k − 1 dimensions we can have k linearly separable
sets). If indeed the clusters were linearly separable after embedding then one could attempt to use
k-means on the embedding to find the clusters, this is precisely the motivation for Spectral Clustering.

Algorithm 3.1 (Spectral Clustering) Given a graph G = (V,E,W) and a number of clusters k
(and t), Spectral Clustering consists in taking a (k − 1) dimensional Diffusion Map λt2ϕ2(i)

(k
φ
−1) .

t (i) = ..
λt


kϕk(i)


(k 1) (k 1)


(k 1)


and clustering the points φt

−
(1), φt

−
(2), . . . , φt

−
(n) ∈ Rk−1 using, for example, k-means clus-

tering.

44

Figure 17: Because the solutions of k-means are always convex clusters, it is not able to handle some
cluster structures.

3.3 Two clusters

We will mostly focus in the case of two cluster (k = 2). For k = 2, Algorithm 3.1 consists in assigning
to each vertex i a real number ϕ2(i) and then clustering the points in the real line. Note in R, clustering
reduces to setting a threshold τ and taking S = {i ∈ V : ϕ2(i) ≤ τ}. Also, it is computationally
tractable to try all possible thresholds (there are ≤ n different possibilities).

Figure 18: For two clusters, spectral clustering consists in assigning to each vertex i a real number
ϕ2(i), then setting a threshold τ and taking S = {i ∈ V : ϕ2(i) ≤ τ}.

Algorithm 3.2 (Spectral Clustering for two clusters) Given a graph G = (V,E,W), consider
the two-dimensional Diffusion Map

i→ ϕ2(i).

set a threshold τ (one can try all different possibilities) and set

S = {i ∈ V : ϕ2(i) ≤ τ}.

45

In what follows we’ll give a different motivation for Algorithm 3.2.

3.3.1 Normalized Cut

Given a graph G = (V,E,W), a natural measure to measure a vertex partition (S, Sc) is

cut(S) =
∑∑

wij .
i∈S j∈Sc

Note however that the minimum cut is achieved for S = ∅ (since cut(∅) = 0) which is a rather
meaningless choice of partition.

Remark 3.3 One way to circumvent this issue is to ask that |S| = |Sc| (let’s say that the number of
vertices n = |V | is even), corresponding to a balanced partition. We can then identify a partition with
a label vector y ∈∑{±1}n where yi = 1 is i ∈ S, and yi = −1 otherwise. Also, the balanced condition

ncan be written as i=1 yi = 0. This means that we can write the minimum balanced cut as

1
min cut(S) = min
S⊂V y
|S|=|Sc

∈{−1,1}n
| 1T y=0

4

∑
i≤j

wij (yi − yj)2 =
1

min yTLGy,
4 y∈{−1,1}n

1T y=0

where L 13
G = D −W is the graph Laplacian. .

Since asking for the partition to be balanced is too restrictive in many cases, there are several
ways to evaluate a partition that are variations of cut(S) that take into account the intuition that one
wants both S and Sc to not be too small (although not necessarily equal to |V |/2). A prime example
is Cheeger’s cut.

Definition 3.4 (Cheeger’s cut) Given a graph and a vertex partition (S, Sc), the cheeger cut (also
known as conductance, and sometimes expansion) of S is given by

cut(S)
h(S) = ,

min{vol(S), vol(Sc)}

where vol(S) =
∑

i∈S deg(i).
Also, the Cheeger’s constant of G is given by

hG = min h(S).
S⊂V

A similar object is the Normalized Cut, Ncut, which is given by

cut(S)
Ncut(S) =

vol(S)
+

cut(Sc)
.

vol(Sc)

Note that Ncut(S) and h(S) are tightly related, in fact it is easy to see that:

h(S) ≤ Ncut(S) ≤ 2h(S).

13W is the matrix of weights and D the degree matrix, a diagonal matrix with diagonal entries Dii = deg(i).

46

Both h(S) and Ncut(S) favor nearly balanced partitions, Proposition 3.5 below will give an inter-
pretation of Ncut via random walks.

Let us recall the construction form previous lectures of a random walk on G = (V,E,W):
w

Prob {X } ij
(t+ 1) = j|X(t) = i = = Mij ,

deg(i)

where M = D−1W . Recall that M = ΦΛΨT where Λ is the diagonal matrix with the eigenvalues λk
of M and Φ and Ψ form a biorthogonal system ΦTΨ = I and correspond to, respectively, the right

− 1

and left eigenvectors of M . Moreover they are given by Φ = D 2V and Ψ = D
1
2V where V TV = I

and D−
1
2WD−

1 1T2 = V ΛV is the spectral decomposition of D− 2WD−
1
2 .

Recall also that M1 = 1, corresponding to Mϕ1 = ϕ1, which means that ψT1 M = ψT1 , where
1

ψ1 = D 2 v1 = Dϕ1 = [deg(i)]1≤i≤n .

This means that
[

deg(i) is the stationary distribution of this random walk. Indeed it is easyvol(G) 1≤i≤n
to check that, if X(t) has

]
a certain distribution pt then X(t + 1) has a distribution pt+1 given by

pTt+1 = pTt M

Proposition 3.5 Given a graph G = (V,E,W) and a partition (S, Sc) of V , Ncut(S) corresponds
to the probability, in the random walk associated with G, that a random walker in the stationary
distribution goes to Sc conditioned on being in S plus the probability of going to S condition on being
in Sc, more explicitly:

Ncut(S) = Prob {X(t+ 1) ∈ Sc|X(t) ∈ S}+ Prob {X(t+ 1) ∈ S|X(t) ∈ Sc} ,
)where Prob{X(t) = } deg(ii = .vol(G)

Proof. Without loss of generality we can take t = 0. Also, the second term in the sum corresponds
to the first with S replaced by Sc and vice-versa, so we’ll focus on the first one. We have:

Prob X(1) Sc X(0) S
Prob {X(1) ∈ Sc { ∈ }|X(0)

∩∈ S ∈} =
Prob {X(0) ∈ S}

=

∑
i∈S
∑

j∈Sc Prob {X(1) ∈ j ∩X(0) ∈ i}

deg
i

=

∑
i∈S Prob {X(0) = i}∑

∈S
∑ (i)

j∈Sc vol(G)
wij

deg(i)∑
i∈S

deg(i)∑ vol(G)

i
=

∈S
∑

j∈Sc wij∑
i∈S deg(i)

=
cut(S)

.
vol(S)

Analogously,

Prob {X(t+ 1) ∈ S|X(t) ∈ Sc cut(S)} = ,
vol(Sc)

which concludes the proof. 2

47

3.3.2 Normalized Cut as a spectral relaxation

Below we will show that Ncut can be written in terms of a minimization of a quadratic form involving
the graph Laplacian LG, analogously to the balanced partition.

Recall that balanced partition can be written as

1
min yTLGy.

4 y∈{−1,1}n
1T y=0

An intuitive way to relax the balanced condition is to allow the labels y to take values in two
different real values a and b (say yi = a if i ∈ S and yj = b if i ∈/ S) but not necessarily ±1. We can
then use the notion of volume of a set to ensure a less restrictive notion of balanced by asking that

a vol (S) + b vol (Sc) = 0,

which corresponds to 1TDy = 0.
We also need to fix a scale/normalization for a and b:

a2 vol (S) + b2 vol (Sc) = 1,

which corresponds to yTDy = 1.
This suggests considering

min yTLGy.
y∈{a,b}n

1TDy=0, yTDy=1

As we will see below, this corresponds precisely to Ncut.

Proposition 3.6 For a and b to satisfy a vol (S) + b vol (Sc) = 0 and a2 vol (S) + b2 vol (Sc) = 1 it
must be that

a =

(
vol(Sc)

vol(S) vol(G)

) 1
2

and b = −
(

vol(S)

vol(Sc) vol(G)

) 1
2

,

corresponding to

yi =


(

vol(Sc)
1

vol(S) vol(G)

)
2

if i ∈ S

−
(

vol(S)
vol(Sc) vol(G)

) 1
2

if i ∈ Sc.

Proof. The proof involves only doing simple algebraic manipulations together with noticing that
vol(S) + vol(Sc) = vol(G). 2

Proposition 3.7
Ncut(S) = yTLGy,

where y is given by

yi =

 (
vol(Sc)

 vol(S) vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc) vol(G)

) 1
2

if i ∈ Sc.

48

Proof.

yTLGy = wij(y
2

i
2

i,j

− yj)

=
∑∑

w 2
ij(yi − yj)

i∈S j∈Sc

=
∑∑ 1 1 2

vol(Sc) 2 vol(S) 2

wij

[
+

c

(
vol(S) vol(G)

) (
vol(Sc) vol(G)

i∈S j S

)]

=
∑
i∈S j

∑∈ 1 v
wij +

c
vol(G)

[
vol(Sc) ol(S)

+ 2
vol(S) vol(Sc)

∈S

]
∑∑ 1

[
vol(Sc) vol(S) vol(S) vol(Sc)

= wij + + +
c

vol(G) vol(S) vol(Sc) vol(S) vol(Sc)
i∈S j∈S

]

1 ∑

=
∑
i∈S

∑
j∈Sc

wij

[
1 1

+
vol(S) vol(Sc)

]

= cut(S)

[
1

vol(S)
+

1

vol(Sc)

= Ncut(S).

]

2

This means that finding the minimum Ncut corresponds to solving

min yTLGy
s. t. y ∈ {a, b}n for some a and b

yT
(26)

Dy = 1
yTD1 = 0.

Since solving (26) is, in general, NP-hard, we consider a similar problem where the constraint that
y can only take two values is removed:

min yTLGy
s. t. y ∈ Rn

yT
(27)

Dy = 1
yTD1 = 0.

Given a solution of (27) we can round it to a partition by setting a threshold τ and taking
S = {i ∈ V : yi ≤ τ}. We will see below that (27) is an eigenvector problem (for this reason we
call (27) a spectral relaxation) and, moreover, that the solution corresponds to y a multiple of ϕ2

meaning that this approach corresponds exactly to Algorithm 3.2.
In order to better see that (27) is an eigenvector problem (and thus computationally tractable),

1

set z = D 2 y and LG = D−
1
2LGD

− 1
2 , then (27) is equivalent

49

min zTLGz
s. t. z ∈ Rn

‖z‖2 = 1 (28)

1 T
D 2 1 z = 0.

Note that LG = I − D−
1
2WD−

1
2 . We order

(
its

)
eigenvalues in increasing order 0 = λ1 (LG) ≤

λ2 (LG) ≤ · · · ≤ λn (L
1

G). The eigenvector associated to the smallest eigenvector is given by D 2 1 this
means that (by the variational interpretation of the eigenvalues) that the minimum of (28) is λ2 (LG)

1 1

and the minimizer is given by the second smallest eigenvector of LG = I −D− 2WD− 2 , which is the
1 1

second largest eigenvector of D− 2WD− 2 which we know is v2. This means that the optimal y in (27)

is given by ϕ2 = D−
1
2 v2. This confirms that this approach is equivalent to Algorithm 3.2.

Because the relaxation (27) is obtained from (26) by removing a constraint we immediately have
that

λ2 (LG) ≤ min Ncut(S).
S⊂V

This means that
1
λ2 (LG) ≤ hG.

2

In what follows we will show a guarantee for Algorithm 3.2.

Lemma 3.8 There is a threshold τ producing a partition S such that

h(S) ≤
√

2λ2 (LG).

This implies in particular that
h(S) ≤

√
4hG,

meaning that Algorithm 3.2 is suboptimal at most by a square root factor.
Note that this also directly implies the famous Cheeger’s Inequality

Theorem 3.9 (Cheeger’s Inequality) Recall the definitions above. The following holds:

1
λ2 (LG) ≤ hG ≤

√
2λ2 (G

2
L).

Cheeger’s inequality was first established for manifolds by Jeff Cheeger in 1970 [Che70], the graph
version is due to Noga Alon and Vitaly Milman [Alo86, AM85] in the mid 80s.

The upper bound in Cheeger’s inequality (corresponding to Lemma 3.8) is more interesting but
more difficult to prove, it is often referred to as the “the difficult part” of Cheeger’s inequality. We
will prove this Lemma in what follows. There are several proofs of this inequality (see [Chu10] for
four different proofs!). The proof that follows is an adaptation of the proof in this blog post [Tre11]
for the case of weighted graphs.
Proof. [of Lemma 3.8]

We will show that given y ∈ Rn satisfying

yTLR Gy
(y) :=

yTDy
≤ δ,

50

and yTD1 = 0. there is a “rounding of it”, meaning a threshold τ and a corresponding choice of
partition

S = {i ∈ V : yi ≤ τ}
such that

h(S)
√

≤ 2δ,

since y = ϕ2 satisfies the conditions and gives δ = λ2 (LG) this proves the Lemma.
We will pick this threshold at random and use the probabilistic method to show that at least one

of the thresholds works.
First we can, without loss of generality, assume that y1 ≤ · ≤ yn (we can simply relabel the

vertices). Also, note that scaling of y does not change the value of R(y). Also, if yD1 = 0 adding
a multiple of 1 to y can only decrease the value of (y): the numerator does not change and the
denominator (y + c1)TD(y + c1) = yTDy + c2 T

R
1 D1 ≥ yTDy.

This means that we can construct (from y by adding a multiple of 1 and scaling) a vector x such
that

x1 ≤ ... ≤ xn, xm = 0, and x2
1 + x2

n = 1,

and
xTLGx ≤ δ,
xTDx

wherem be the index for which vol({1, . . . ,m−1}) ≤ vol({m, . . . , n}) but vol({1, . . . ,m}) > vol({m, . . . , n}).
We consider a random construction of S with the following distribution. S = {i ∈ V : xi ≤ τ}

where τ ∈ [x1, xn] is drawn at random with the distribution

b

Prob {τ ∈ [a, b]} =

∫
2

a
|τ |dτ,

where x1 ≤ a ≤ b ≤ xn.
It is not difficult to check that

Prob {τ ∈ [a, b]} =

{ ∣∣b2 − a2
∣∣ if a and b have the same sign

a2 + b2 if a and b have different signs

Let us start by estimating E cut(S).

1
E cut(S) = E w

2

∑
i∈V j

∑
ij1(S,Sc) cuts the edge (i,j)

∈V

1
= w

2

∑
ij Prob{(S, Sc) cuts the edge (i, j)}

i∈V j

∑
∈V

Note that Prob{(S, Sc) cuts the edge (i, j)} is
∣∣∣x2
i − x2

j

∣∣∣ is x 2 2
i and xj have the same sign and xi +xj

otherwise. Both cases can be conveniently upper bounded by |xi − xj | (|xi|+ |xj |). This means that

1
E cut(S) ≤ w

2

∑
ij

i,j

|xi − xj | (|xi|+ |xj |)

1≤
√∑

w (x − x)2 2
ij i j

2
ij

√∑
wij(

ij

|xi|+ |xj |) ,

51

where the second inequality follows from the Cauchy-Schwarz inequality.
From the construction of x∑we know that

w 2
ij(xi xj) = 2xTLGx 2δxTDx.

ij

− ≤

Also,∑
wij(

ij

|xi|+ |x |)2 ≤
∑

w 2x2 + 2x2. = 2

(∑
deg(i)x2 2 T

j ij i j i + 2 deg(j)xj = 4x Dx.
ij i

) ∑
j



This means that


1

E cut(S) ≤
2

√
2δxTDx

√
4xTDx =

√
2δ xTDx.

On the other hand,
n

Emin{volS, volSc} = deg(i) Prob
i=1

{xi is in the smallest set (in terms of volume)},

to break ties, if vol(S) = vol(S

∑
c) we take the “smallest” set to be the one with the first indices.

Note that m is always in the largest set. Any vertex j < m is in the smallest set if xj ≤ τ ≤ xm = 0
and any j > m is in the smallest set if 0 = xm ≤ τ ≤ xj . This means that,

Prob{xi is in the smallest set (in terms of volume) = x2
j .

Which means that
n

Emin{volS, volSc} =
∑

deg(i)x2
i = xTDx.

i=1

Hence,
E cut(S)

Emin{volS, volSc}
≤
√

2δ.

E cut(S) cut(S)Note however that because is not necessarily the same as and so,Emin{volS,volSc E} min{volS,volSc}
we do not necessarily have

cut(S)
E

√
min{volS, volSc

≤ 2δ.
}

However, since both random variables are positive,

E cut(S) ≤ Emin{volS, volSc
√
} 2δ,

or equivalently

E
[
cut(S)−min{volS, volSc

√
} 2δ ≤ 0,

which guarantees, by the probabilistic method, the existence of S

]
such that

cut(S) ≤ min{volS, volSc
√
} 2δ,

which is equivalent to
cut(S)

h(S) =
√

2δ,
min{volS, volSc

≤
}

which concludes the proof of the Lemma.

52

2

3.4 Small Clusters and the Small Set Expansion Hypothesis

We now restrict to unweighted regular graphs G = (V,E).
Cheeger’s inequality allows to efficiently approximate its Cheeger number up to a square root

factor. It means in particular that, given G = (V,E) and φ we can efficiently between the cases where:
hG ≤ φ or hG ≥ 2

√
φ. Can this be improved?

Open Problem 3.1 Does there exists a constant c > 0 such that it is NP -hard to, given φ, and G
distinguis between the cases

1. hG ≤ φ, and

2. hG ≥ c
√
φ?

It turns out that this is a consequence [RST12] of an important conjecture in Theoretical Computer
Science (see [BS14] for a nice description of it). This conjecture is known [RS10] to imply the Unique-
Games Conjecture [Kho10], that we will discuss in future lectures.

Conjecture 3.10 (Small-Set Expansion Hypothesis [RS10]) For every ε > 0 there exists δ > 0
such that it is NP -hard to distinguish between the cases

)1. There exists a subset S ⊂ cut(SV with vol(S) = δ vol(V) such that vol(S) ≤ ε,

cut(S)2. ≥ 1 ol(S − ε, for every S vvol() ⊂ V satisfying S) ≤ δ vol(V).

3.5 Computing Eigenvectors

Spectral clustering requires us to compute the second smallest eigenvalue of LG. One of the most
efficient ways of computing eigenvectors is through the power method. For simplicity we’ll consider
the case on which we are computing the leading eigenvector of a matrix A ∈ Rn×n with m non-
zero entries, for which |λmax(A)| ≥ |λmin(A)| (the idea is easily adaptable). The power method

proceeds by starting with a guess y0 Aytand taking iterates yt+1 = ‖Ayt . One can show [KW92] that the‖
variantes of the power method can find a vector x in randomized time O δ−1(m+ n) log n satisfying
xTAx ≥ λmax(A)(1 − δ)xTx. Meaning that an approximate solution can

(
be found in quasi-linear

time.14

)
One drawback of the power method is that when using it, one cannot be sure, a posteriori, that

there is no eigenvalue of A much larger than what we have found, since it could happen that all our
guesses were orthogonal to the corresponding eigenvector. It simply guarantees us that if such an
eigenvalue existed, it would have been extremely likely that the power method would have found it.
This issue is addressed in the open problem below.

Open Problem 3.2 Given a symmetric matrix M with small condition number, is there a quasi-
linear time (on n and the number of non-zero entries of M) procedure that certifies that M � 0. More
specifically, the procedure can be randomized in the sense that it may, with some probably not certify
that M � 0 even if that is the case, what is important is that it never produces erroneous certificates
(and that it has a bounded-away-from-zero probably of succeeding, provided that M � 0).

14Note that, in spectral clustering, an error on the calculation of ϕ2 propagates gracefully to the guarantee given by
Cheeger’s inequality.

53

The Cholesky decomposition produces such certificates, but we do not know how to compute it
in quasi-linear time. Note also that the power method can be used in αI −M to produce certifi-
cates that have arbitrarily small probability of being false certificates. Later in these lecture we will
discuss the practical relevance of such a method as a tool to quickly certify solution produced by
heuristics [Ban15b].

3.6 Multiple Clusters

Given a graph G = (V,E,W), a natural way of evaluating k-way clusterign is via the k-way expansion
constant (see [LGT12]):

,...,S

{
cut(S)

ρG(k) = min max
S1 k l=1,...,k v

}
,

ol(S)

where the maximum is over all choice of k disjoin subsets of V (but not necessarily forming a partition).
Another natural definition is

ϕG(k) = min
S:volS≤ 1

k
vol(G)

cut(S)
.

vol(S)

It is easy to see that
ϕG(k) ≤ ρG(k).

The following is known.

Theorem 3.11 ([LGT12]) Let G = (V,E,W) be a graph and k a positive integer

ρG(k) ≤ O
(
k2
)√

λk, (29)

Also,

ρG(k) ≤ O
(√

λ2k log k
)
.

Open Problem 3.3 Let G = (V,E,W) be a graph and k a positive integer, is the following true?

ρG(k) ≤ polylog(k)
√
λk. (30)

We note that (30) is known not to hold if we ask that the subsets form a partition (meaning that
every vertex belongs to at least one of the sets) [LRTV12]. Note also that no dependency on k would
contradict the Small-Set Expansion Hypothesis above.

54

MIT OpenCourseWare
http://ocw.mit.edu

18.S096 Topics in Mathematics of Data Science
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

