
Lecture 5 : Stochastic Processes I

1 Stochastic process

A stochastic process is a collection of random variables indexed by time.

An alternate view is that it is a probability distribution over a space
of paths; this path often describes the evolution of some random value, or
system, over time. In a deterministic process, there is a fixed trajectory
(path) that the process follows, but in a stochastic process, we do not know
apriori which path we will be given. One should not regard this as having
no information of the path since the information on the path is given by
the probability distribution. For example, if the probability distribution is
given as one path having probability one, then this is equivalent to having a
deterministic process. Also, it is often interpreted that the process evolves
over time. However, from the formal mathematical point of view, a better
picture to have in mind is that we have some underlying (unknown) path,
and are observing only the initial segment of this path.

For example, the function f : R≥0 → R given by f(t) = t is a determin-
istic process, but a ‘random function’ f : R R≥0 → given by f(t) = t with
probability 1/2 and f(t) = −t with probability 1/2 is a stochastic process.
This is a rather degernerate example and we will later see more examples of
stochastic processes.

We are still dealing with a single basic experiment that involves outcomes
goverened by a probability law. However, the newly introduced time variable
allows us to ask many new interesting questions. We emphasize on the
following topics:

(a) We tend to focus on the dependencies in the sequence of values
generated by the process. For example, how do future prices of a stock
depend on past values?

(b) We are interested in long-term averages involving the entire sequence
of generated values. For example, what is the fraction of time that a machine
is idle?
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(c) We are interested in boundary events. For example, what is the
probability that within a given hour all circuits of some telephone system
become simultaneously busy?

A stochastic process has discrete-time if the time variable takes positive
integer values, and continuous-time if the time variable takes postivie real
values. We start by studying discrete time stochastic processes. These
processes can be expressed explicitly, and thus are more ‘tangible’, or ‘easy
to visualize’. Later we address continuous time processes.

2 Simple random walk

Let Y1, Y2, · · · be i.i.d. random variables such that Yi = ±1 with equal
probability. Let X0 = 0 and

Xk = Y1 + · · ·+ Yk,

for all k ≥ 1. This gives a probability distribution over the sequences
{X0, X1, · · · , }, and thus defines a discrete time stochastic process. This
process is known as the one-dimensional simple random walk, which we
conveniently refer to as random walk from now on.

By the central limit theorem, we know that for large enough n, the
distribution of 1√

n
Xn converges to the normal distribution with mean 0 and

variance 1. This already tells us some information about the random walk.
We state some further properties of the random walk.

Proposition 2.1. (i) E[Xk] = 0 for all k.
(ii) (Independent increment) For all 0 = k0 ≤ k1 ≤ · · · ≤ kr, the random

variables Xki+1
−Xki

for 0 ≤ i ≤ r − 1 are mutually independent.
(iii) (Stationary) For all h ≥ 1 and k ≥ 0, the distribution of Xk+h−Xk

is the same as the distribution of Xh.

Proof. The proofs are straightforward and are left as an exercise. Note
that these properties hold as long as the increments Yi are identical and
independent and have mean 0.
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Example 2.2. (i) Suppose that a gambler plays the following game. At
each turn the dealer throws an un-biased coin, and if the outcome is head
the gambler wins $1, while if it is head she loses $1. If each coin toss is
independent, then the balance of the gambler has the distribution of the
simple random walk.

(ii) Random walk can also be used as a (rather inaccurate) model of
stock price.
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For two positive integers A and B, what is the probability that the
random walk reaches A before it reaches −B? Let τ be the first time at
which the random walk reaches either A or −B. Then Xτ = A or −B.
Define

f(k) = P(Xτ = A |X0 = k),

and note that our goal is to compute f(0). The recursive formula f(k) =
1
2f(k+ 1) + 1f2 (k−1) follows from considering the outcome of the first coin-
toss. We also have the boundary conditions f(A) = 1, f(−B) = 0. If we
let f(−B + 1) = α, then it follows that f(

1
−B + r) = αr for all r ≤ A+ B.

Therefore, α = A+B , and it follows that

f(0) =
B
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3 Markov Chain

One important property of the simple random walk is that the effect of the
past on the future is summarized only by the current state, rather than
the whole history. In other words, the distribution of Xk+1 depended only
on the value of Xk, not on the whole set of values of X0, X1, · · · , Xk. A
stochastic process with such property is called a Markov chain.

More formally, let X0, X1, · · · be a discrete-time stochastic process where
each Xi takes value in some discrete set S (note that this is not the case in
the simple random walk). The set S is called the state space. We say that
the stochastic process has the Markov property if

P(Xn+1 = i |Xn, Xn 1, · · · , X0) = P(Xn+1 = i− |Xn)

for all n ≥ 0 and i ∈ S. We will discuss the case when S is a finite set. In
this case, we let S = [m] for some positive integer m.

A stochastic process with the Markov property is called a Markov chain.
Note that a finite Markov chain can be described in terms of the transition
probabilities

pij = P(Xn+1 = j |Xn = i) i, j ∈ S.

One can easily see that ∑
pij = 1 ∀i ∈ S.

j∈S

3



All the elements of a Markov chain model can be encoded in a transition
probability matrix 

p11 p21 · · · p

A =
 m1 p12 p22

. .
·
.
· · pm2 .. . .


.

. . . ..
p1m p2m · · · pmm

Note that the sum of each column is equal to one.



Example 3.1. (i) A machine can be either working or broken on a given
day. If it is working, it will break down in the next day with probability
0.01, and will continue working with probability 0.99. If it breaks down
on a given day, it will be repaired and be working in the next day with
probability 0.8, and will continue to be broken down with probability 0.2.
We can model this machine by a Markov chain with two states: working,
and broken down. The transition probability matrix is given by[

0.99 0.8
.

0.01 0.2

]
(ii) A simple random walk is an example of a Markov chain. However,

there is no transition probability matrix associated with the simple random
walk since the sample space is of infinite cardinatlity.

Let rij(n) = P(Xn = j |X0 = i) be the n-th step transition probabilities.
These probabilities satisfy the recurrence relation

m

rij(n) =
∑

rik(n− 1)pkj for n > 1,
k=1

where rij(1) = pij . Hence the n-step transition probability matrix can easily
be shown to be An.

A stationary distribution of a Markov chain is a probability distribution
over the state space S (where P(X0 = j) = πj) such that

∑m
πj = πk · pkj (∀j ∈ S).

k=1

Example 3.2. Let S = Zn and X0 = 0. Consider the Markov chain
X0, X n + 1

1, X2, · · · such that Xn+1 = X 1 with proability 2 and Xn+1 =
Xn − 1 with probability 1

2 . Then the stationary distribution of this Markov
chain is πi = 1
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in for all .
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Note that the vector (π1, π2, · · · , πm) is an eigenvector of A with eigen-
value 1. Hence the following theorem can be deduced from the Perron-
Frobenius theorem.

Theorem 3.3. If pij > 0 for all i, j ∈ S, then there exists a unique station-
ary distribuion of the system. Moreover,

lim rij(n) = πj , ∀i, j ∈ S.
n→∞

A corresponding theorem is not true if we consider infinite state spaces.

4 Martingale

Definition 4.1. A discrete-time stochastic process {X0, X1, · · · } is a mar-
tingale if

Xt = E[Xt+1|Ft],

for all t ≥ 0, where Ft = {X0, · · · , Xt} (hence we are conditioning on the
initial segment of the process).

This says that our expectated gain in the process is zero at all times.
We can also view this definition as a Mathematical formalization of a game
of chance being fair.

Proposition 4.2. For all t ≥ s, we have Xs = E[Xt|Fs].

Proof. This easily follows from induction.

Example 4.3. (i) Random walk is a martingale.
(ii) The balance of a roulette player is not a martingale (we always have

Xk > E[Xk+1|Fk]).
(iii) Let Y1, Y2, · · · be i.i.d. random variables such that Yi = 2 with

probability 1
3 and Yi = 1

2 with probability 2
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. Let X0 = 0, Xk = k
i=1 Yi3 .

Then {X0, X1, · · · } forms a martingale.

∏

5 Optional stopping theorem

Definition 5.1. (Stopping time) Given a stochastic process {X0, X1, · · · },
a non-negative integer-valued random variable τ is called a stopping time
if for every integer k ≥ 0, the event τ ≤ k depends only on the events
X0, X1, · · · , Xk.
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Example 5.2. (i) In the coin toss game, consider a gambler who bets $1
all the time. Let τ be the first time at which the balance of the gambler
becomes $100. Then τ is a stopping time.

(ii) Consider the same gambler as in (i). Let τ be the time of the first
peak (local maximum) of the balance of the gambler. Then τ is not a
stopping time.

Theorem 5.3. (Doob’s optional stopping time theorem, weak form) Suppose
that X0, X1, X2, · · · is a martingale sequence and τ is a stopping time such
that τ ≤ T for some constant T . Then E[Xτ ] = E[X0].

Proof. Note that

T−1

Xτ = X0 +
∑

(Xi+1

i=0

−Xi) · 1{τ≥i+1 .}

(we used the fact τ ≤ T ). Since T is a constant, by linear of expectation we
have

T−1

E[Xτ ] = E[X0] +
∑

E
[
(Xi+1 −Xi) {

=0

· 1 τ≥i+1}
i

]
.

The main observation is that τ ≥ i + 1 is determined by X0, X1, · · · , Xi.
Hence

E
[
(Xi+1 −Xi) · 1{τ≥i+1}

]
= E

[
E
[
(Xi+1 −Xi) · 1{τ≥i+1} | Fi

= E
[

(E[X[ i+1 | Fi]

]
−Xi) · 1{τ≥i+1

]
}

= E 0

]
· 1{τ≥i+1}

]
= 0.

Hence E[Xτ ] = E[X0].
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The condition can be further weakened (see [4]). The lesson to learn is
that ‘a mortal being has no winning strategy (when the game is fair)’. On
the other hand, if one has some advantage over an opponent in some game,
then no matter how small that advantage is, he/she will win in the long run.

Exercise 5.4. In the coin toss game, consider the following strategy. The
gambler stops playing the first time at which the balance becomes $100.
Note that by definition, we have E[Xτ ] = 100. Does this contradict the
optional stopping theorem?
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Optional stopping time theorem can be used to deduce interesting facts.

Exercise 5.5. For two positive integers a and b , consider the following
strategy for the coin toss game. A player stops at the first time the balance
equals either to a or to −b . Let this time be τ . What is the probability
distribution of Xτ? (i.e., what are the probabilities that Xτ = a and Xτ = b
?)
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