
TAKING STOCK

In today’s lecture, we are going to take stock of where we’ve come from and discuss
where we’re going. What were the difficulties in the problems? What were the main
things we learned? What is the next challenge?

In the last lecture, we proved the following theorem about 3-rich points for sets of
lines in R

3:

Theorem 0.1. Let L be a set of L lines in R
3 with ≤ B lines in any plane. If

B ≥ L1/2, then |P3(L)| . BL.

The proof involved three tools that we developed ahead of time: flat points and
lines, degree reduction, and Bezout’s theorem. Putting it all together, it is the longest
proof we have studied so far in this course. I want to take a little time to put it in
context more. We’ll look at some examples. Also, we’ll try to describe the nature of
the difficulty in proving the theorem. Why does it take this much work to prove the
theorem?

We begin with a simple example. A collection of B lines in a plane can have ∼ B2

3-rich points. For example, we can take a grid with B/3 evenly spaced vertical lines,
B/3 evenly spaced horizontal lines, and B/3 evenly spaced diagonal lines. In this
grid, we get ≥ B2/20 3-rich points. Next, if we choose L/B generic planes, and put
B lines in each plane, we get an arrangement of lines with ∼ BL 3-rich points. We
can arrange that there will be ≤ B lines in any plane by taking each configuration
of B lines and rotating and translating it generically.

1. What makes the theorem hard?

To get a feel for the difficulty, let’s consider the following much weaker corollary.

Proposition 1.1. Suppose that L is a set of L lines in R
3 with ≥ L1.99 3-rich points.

Then, there is a plane that contains ≥ 3 lines of L.

To prove the proposition, the key question is “how can we find this plane”? Let’s
mention one possible way of finding a plane with three lines in it. Let us look at the
incidence matrix of P3(L) with L. If we find a “triangle” in the incidence matrix,
then we automatically get three lines in a plane. A triangle is a set of three lines
l1, l2, l3 ∈ L, and three points x1, x2, x3 ∈ P3 so that each line contains exactly two
of the three points. In this case, the points x1, x2, x3 lie in a unique plane π which
contains all three lines.
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We can try to find a triangle in the incidence matrix. What do we know about the
incidence matrix. By hypothesis, it has dimensions L × P with P ≥ L1.99, and each
point lies in at least three lines. Also, any two lines intersect in at most one point.
Just based on this information, does the matrix need to have a triangle? The answer
to this question is no. It comes from an interesting example that was explained to
me by Andrew Suk.

Proposition 1.2. Fix any ǫ > 0. For all sufficiently large L, we can find a set L of
L lines in R

2 ⊂ R
3 and a set of 3-rich points P ⊂ P (L) so that |P | ≥ L2−ǫ

3 and yet
the incidence matrix of P and L contains no triangle.

The construction is based on an important example of Behrend about 3-term arith-
metic progressions. Recall that an arithmetric progression of length r is a sequence
of numbers a, a+ d, a+2d, ..., a+(r− 1)d. Behrend’s example is concerned with the
question, “how large is the largest subset of the integers from 1 to N with no 3-term
arithmetric progression?”

Theorem 1.3. (Behrend, 1946) Fix any ǫ > 0. For any N sufficiently large, there is
a subset of [1...N ] with ≥ N1−ǫ elements and with no 3-term arithmetic progression.

We’ll discuss Behrend’s construction some time later... Using it, we now give the
proof of Proposition 1.2.

Proof. We describe the lines and the points. The lines are vertical, horizontal, and
diagonal lines in a grid. We take vertical lines x = a for a = 1...S. We take horizontal
lines y = b for b = 1...S. And we take diagonal lines x− y = c for c = −S, ..., S. We
have a total of L = 4S + 1 lines. We let X denote the S × S grid of lattice points
{(a, b) ∈ Z

2|1 ≤ a, b ≤ S}. Each point of X lies in exactly three lines of L. The set
X is the set of all 3-rich points of L. It has size S2 ∼ L2, but the incidence matrix of
X with L contains many triangles. We will pare down X slightly to a subset P ⊂ X
so that the incidence matrix of P with L contains no triangles. The key idea of the
proof is that Behrend’s construction lets us do this paring.

By Behrend’s construction, we can find a subset P0 ⊂ [S/2, ..., 3S/2] so that |P0| ≥
S1−ǫ and yet P0 contains no 3-term arithmetic progression. We define the set P :=
{(a, b) ∈ X|a + b ∈ P0}. For each d ∈ [S/2, ..., 3S/2], the set of (a, b) ∈ X so that
a + b = d has ≥ S/2 elements, and so |P | ≥ (1/2)S2−ǫ ≥ cL2−ǫ.

Consider a triangle in the incidence matrix of X and L. The horizontal lines are
pairwise disjoint, as are the vertical lines and the diagonal lines. Therefore, the
triangle must consist of one horizontal line, one vertical line, and one diagonal line.
Let xi = (ai, bi) ∈ X be the vertices of the triangle. We have to show that the three
vertices are not all in P . It suffices to show that di = ai +bi form a 3-term arithmetic
progression. This follows by the geometry of the triangle.
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It’s probably best at this moment to draw your own picture. But for completeness,
we write down the details. Suppose that x1 is the lower-left vertex, x2 is the right
angle, and x3 is the upper-right vertex. We have (a2, b2) = (a1, b1+d). And (a3, b3) =
(a2 + e, b2). But because the diagonal line is at a 45 degree angle, we see that the
triangle is isosceles and so e = d. A short computation shows that a1 + b1, a2 +
b2, a3 + b3 make a 3-term arithmetic progression. �

Therefore, we probably need a different idea to locate a plane with three lines in it.
We can formulate this issue more precisely using the axioms of incidence theory (for
points, lines, planes in three dimensions). In these axioms, we have a set of points,
and each line or plane is a subset of the points, and the whole structure obeys a list
of axioms. We don’t give the whole list of axioms here, but we give the flavor by
mentioning two examples. 1. For any two points, there is a unique line containing
the two points. 2. If three points don’t all lie on a line, then there is a unique
plane containing the three points. Etc. Now we may ask whether Theorem 0.1 or
Proposition 1.1 hold more generally in the axioms of incidence theory. I believe that
the answer is ‘no’ and that Suk’s construction can be modified to prove the following

Conjecture 1.4. Fix any ǫ > 0. Then for arbitrarily large numbers L, the following
holds: there is a set of points, lines, and planes obeying the incidence axioms, and a
subset L of the lines, so that |L| = L, |P (L)| ≥ L2−ǫ

3 and yet each plane contains
≤ 2 lines of L.

Theorem 0.1 depends on some other structure about lines in R
3 which is not

captured in the incidence axioms. What structure is it? Our proof is based on
algebraic structure.

There’s a fairly short proof of Proposition 1.1 using reguli. If L has L1.99 3-rich
points, then it follows from Problem Set 2 that there is a regulus or plane containing
& L.99 lines of L. Since the lines inside a regulus cannot make any 3-rich points,
it’s not too hard to push a bit farther and prove that there is a plane containing
& L.99 lines of L. Reguli provide an additional structure which is not included in the
incidence axioms. Basically this structure amounts to including degree 2 surfaces as
well as planes.

The technique of reguli cannot easily push all the way down to L3/2 3-rich points.
To try to find a regulus with many lines, we can look at the intersection matrix of
the lines of L. If this matrix has a 3×A minor of all 1’s, then we can find ∼ A lines
which lie in a common plane, lie in a common regulus, or pass through a common
point. But by Brown’s construction, the intersection matrix may have no 3×3 minor
of all 1’s and still have L5/3 1’s. It’s hard to rule out that we may have ∼ L5/3 3-rich
points points but the intersection matrix may have no 3 × 3 minor of all 1’s.

In our proof with the polynomial method, we include in the story not just surfaces
of degree 2 but surfaces of all degrees. With this algebraic structure, we are able to
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prove Theorem 0.1, which holds as long as the number of 3-rich points is at least a
large constant times L3/2. It’s actually not clear what happens below this threshold
(i.e. for B < L1/2 in the statement of the theorem). The polynomial method (as we’ve
been using it) stops working, but I don’t know any examples with P3 significantly
larger than BL.

2. The big picture

We have mostly been talking about estimates for the incidences of lines in R
2

or R
3. We can usually begin on any given problem by thinking about basic facts

about incidences, such as “two points lie on a unique line”. These facts lead to
some basic estimates, but in many cases the basic estimates are far from sharp. To
improve them, we need some subtler facts about lines. We have followed two main
approaches.

(1) Use the topological structure of Euclidean space. This approach leads to the
crossing number lemma, the Szemerédi-Trotter theorem, and other applica-
tions.

(2) Use the algebraic structure of Euclidean space. This approach leads to the
joints theorem and Theorem 0.1 above.

How can we recongnize/guess which tool is good for which problem? In the case of
the Szemerédi-Trotter theorem, the need for topological considerations is motivated
by the example of lines in finite fields. The Szemerédi-Trotter theorem fails badly if
we let L be the set of all lines in F

2

q. Finite fields have most of the algebraic structure

that we see in R
2, but they’re very different topologically.

It’s less clear to me how to recognize the need for algebraic structure. For example,
I still find it kind of surprising that there is not a very different proof of the joints
theorem - and such a proof may indeed exist. I think one can probably demonstrate
that these theorems don’t follow just from ‘incidence axioms’. (Of course Szemerédi-
Trotter also does not follow just from incidence axioms.) In practice, if a certain
question seems similar to the joints theorem or finite field Kakeya..., then it’s a can-
didate for the polynomial method. Also, if it’s possible to do some degree reduction,
then the problem is a good candidate for the polynomial method.

So far, these two techniques have been complementary. We can’t prove the Sze-
merédi-Trotter theorem with just the polynomial method. If we try to find a low-
degree polynomial on the points, then we get a degree which is larger than the number
of points on each line, and then we can’t do anything with it. If we try to find a
low degree polynomial that vanishes on the lines, since we are in the plane, we just
get a degree L polynomial and it doesn’t lead to any interesting information about
the points. There is no possibility of doing degree reduction – any set of L lines in
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the plane has degree exactly L. This may suggest that the polynomial method is not
well suited to study questions about lines in the plane.

On the other hand, the topological methods have had only limited success in
proving estimates for the joints problem. The basic issue is that curves in R

3 do not
divide space into components, and so the whole set up is totally different. There
are papers using the topological approach to prove interesting estimates about the
joints problem – the best estimate proven this way is something like J ≤ L1.62.... The
method involves taking lines or curves in space and projecting them onto planes, and
then using the crossing number lemma to study the projections. It seems difficult
to capture all the 3-dimensional structure that we’re interested in with these two-
dimensional projections...

So we have studied two methods. They are useful in different situations – in some
sense they deal with different difficulties. However, there are problems that involve
both types of difficulties.

3. The next goal

Our next goal is the following theorem. It was conjectured by Elekes and Sharir
and proven by Katz and G.

Theorem 3.1. Suppose that L is a set of lines in R
3 with ≤ L1/2 lines in any plane.

Suppose that 3 ≤ k ≤ L1/2. Then |Pk| . L3/2k−2.

This theorem involves both types of difficulties. For large values of k, it is false
over finite fields. In particular, let us consider the set of all lines in F

3

q . We have

|L| ∼ q4. The number of lines in each plane is ∼ q2 ≤ L1/2. Each point lies in ≥ q2

lines. Therefore, taking k = q2 ≤ L1/2, we have |P | = q3 ∼ L3/2k−3/2
k . We see

indeed that our theorem is false over finite fields. The example is reminiscent of the
Szemerédi-Trotter theorem, and it suggests we need to use the topological structure
of R

3. If we try to adapt the algebraic proof of Theorem 0.1 to large k, then the
method gives the upper bound |Pk| . L3/2k−3/2, matching the example in finite
fields. Moreover it looks plausible that the proof of Theorem 0.1 can be extended to
finite fields, and that the same results hold there.

On the other hand, if we look for a purely topological proof, it seems hard to prove
the case k = 3 that we already proved with the polynomial method.

Our next goal is to prove this theorem by combining the polynomial method and
the topological method.
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