
THE FINITE-FIELD NIKODYM AND KAKEYA PROBLEMS 

These notes are rougher than I would like, but they still have some main proofs. 
Let F be a finite field with q elements. A set N ⊂ F n is called a (generalized) 

Nikodym set, if for each point x ∈ F n, there is a line L(x) containing x so that 
|L(x) ∩N | ≥ q/2. A trivial example of a Nikodym set is the entire set F n . Can one 
find a significantly smaller Nikodym set? 

Theorem 0.1. (Dvir) Any (generalized) Nikodym set in F n contains at least cnqn 

elements. 

Proof. Let V (d) be the vector space of degree d polynomials in n variables with 
coefficients in F . We pick a polynomial P (not identically zero) that vanishes on 

|N |1/nN with degree ≤ Cn . If this degree is < q/2, then P must vanish at every 
point x ∈ F n . But a polynomial of degree ≤ q/2 cannot vanish at every point of F n 

unless it vanishes identically. We conclude that the degree of P is at least q/2 and 
so |N | ≥ Cn 

−1(q/2)n . D 

(We used the following lemma. A polynomial P in n variables over F of degree 
d < q cannot vanish at every point of F n unless each coefficient of P is zero. 

proof by induction on n. The case n = 1 appears in Lecture 2. �dSuppose P vanishes at each point of F n . Write P (x1, ..., xn) = Pj(x1, ..., xn−1)x
d .j=0 n

For each particular choice of x1, ..., xn−1, we know that P (x1, ..., xn) = 0 for all 
xn ∈ F . Since d < q, we see that the coefficients Pj(x1, ..., xn−1) must vanish for 
each j. Therefore Pj(x1, ..., xn−1) = 0 for each (x1, ..., xn−1) ∈ F n−1 . By induction, 
we see that the coefficients of Pj all vanish. But then the coefficients of P all vanish.) 

Dvir also proved a small variation which is a tiny bit harder than the proof above. 
A set K ⊂ F n is called a Kakeya set if it contains a line in every direction. In other 
words, for every vector a ∈ F n \{0}, there is a vector b so that the line {at+b|t ∈ F } 
is contained in K. A trivial example of a Kakeya set is the entire vector space F n . 
Can one find a Kakeya set significantly smaller than this? 

Theorem 0.2. A Kakeya set K ⊂ F n has at least cnqn elements. 

Proof. Let K be a Kakeya set. If K is smaller than the conclusion, let P be a 
polynomial vanishing on K of degree < q. Let d be the degree of P . Write P = Pd+Q, 
where Pd is the sum of monomials of degree d and Q is a polynomial of degree ≤ d−1. 

Let a be any non-zero vector. Choose b so that the line {at + b|t ∈ F } is contained 
in K. Consider the polynomial in one variable R(t) := P (at + b). The polynomial 
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R vanishes for each t ∈ F . It has degree ≤ d < q, and so its coefficeints all vanish. 
In particular, its coefficient of degree d vanishes. But the coefficient of td in R is 
exactly Pd(a). So we see that Pd(a) vanishes for all a ∈ F n \ {0}. But since the 
degree of Pd is d < q, it easily follows that Pd vanishes at 0 also. Then we see that 
Pd is identically zero, and we reach a contradiction. D 

The Kakeya and Nikodym problems presented here are the analogues of deep open 
problems in Euclidean space. A Kakeya set K ⊂ Rn is a set which contains a unit 
line segment in each direction. For example, the ball of radius 1/2 is a Kakeya 
set. Besicovitch constructed surprising examples of Kakeya sets with arbitrarily 
small volume and even with measure 0. Besicovitch’s construction works in each 
dimension n ≥ 2. Although his sets have measure zero, they all have full Hausdorff 
dimension. The Kakeya conjecture is that every Kakeya set K ⊂ Rn has Hausdorff 
dimension n. 

It can be hard to appreicate the polynomial method proofs without some back
ground trying to prove this type of result without it. We give two simple combina
torial estimates for the size of a finite field Kakeya set K ⊂ Fq

n . 
1. (Bush method) By pigeonholing, there is a point x ∈ K which lies in at least 

qn/|K| lines of the Kakeya set. The union of all the lines of the Kakeya set thru a 
given point is called a bush. All of these lines are disjoint except at x. Therefore, 
the bush contains at least qn(q − 1)/|K| points. Since the bush is contained in K, 

we see that |K| ≥ (1/2)q 
n+1 

.2 

2. (L2-method, or just counting) Consider the lines of K one at a time. The first 
contains q points. The second must contain at least q −1 points not in the first. The 
third must contain at least q − 2 points not in the first two, etc. Therefore, the first 
q lines must contain at least (1/2)q2 distinct points. So |K| ≥ (1/2)q2 . 

Both these methods only use the fact that two distinct lines intersect in ≤ 1 point 
and that a Kakeya set is the union of ≥ qn−1 distinct lines. In other words, we have 
not used the fact that the lines point in different directions! However, there are q2 

lines in a plane. In order to see that a Kakeya set in F3 must contain q2+ǫ points, 
we need to use that the lines point in different directions in order to rule out the 
example that they all lie in a plane. 
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