
LECTURE 8

Hydraulic machines and systems II 
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Basic hydraulic machines & components


Graphical Nomenclature 
� Arrows show direction of flow 

Pipe or hose with fluid flow 

PumpMotor 

Valve 
Pressure 

Gauge 

Cylinder 

port 

Power out 

port 

Power in 

Pipe or hose without fluid flow 

Control Volume 

Pay attention to flows in/out 

Reservoir 
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Example I – Pump & cylinder

Solve for the the velocity of piston and the force exerted by piston 

Note where power crosses into and out of the system boundary 

Tp = 10 in-lbf 

ωp = 1000 rpm 
2π 

Reservoir 

Pump Valve 
Cylinderp3 = 1014 psi 

x 

Acyl = 10 in2 

p4 = 14 psi 

p3 

Power in 
Power out 

Fcyl 
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Example I – Pump & cylinder cont.

Force exerted by piston: 

� Fcyl = Acyl ∆pcyl

� ∆pcyl = p3 - p4 = 1014 psi – 14 psi = 1000 psi

� Fcyl = 10 in2 1000 lbf/in2 = 10 000 lbf


If we know F and v, we know the power output of the cylinder 
� At the boundary of the hydraulic system we see one inflow & one outflow of power 
� From the power balance: 
� Σ Pin= Σ Pout + Σ Ploss + Σ (dEstored/dt); If Ploss & (dEstored/dt) are small compared to 

Pout: 
� Σ Pin ~ Σ Pout 
� Tp ωp ~ Fcyl vcyl 

� vcyl ~ (Tp ωp )/ Fcyl 
– = (10 in-lbf) (1000/2π rev/min) (2π rad/rev) (1/60 min/s) / (10 000 lbf) 
– = 0.0167 in/s 

– Always check and list your units!!! 
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Example II – Pump, motor, & cylinder

Given the diagram, solve for Tm and ωm


Note where power crosses into and out of the system boundary

Dp = 0.5 in3/rev Dm = 1 in3/rev 

Tp = 7.16 in-lbf 

Pump 

Reservoir 

2ππππ 

Motor 

x 

Acyl = 5 in2 

p4 = 33.2 psi 

Valve 
p3 = 44 psi 

p3 

Fcyl 

ωp = 1000 rpm 
Tm = ? 
ωm = ? 
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Example II – Pump, motor, & cylinder cont.

Motor speed: We know that the mass flow rate through the pump and 

motor has to be the same.  As we assume the liquid is incompressible, 
this means the volumetric flow rate is the same: 
� Qp = ωp Dp = Qm = ωm Dm 
� ωm = ωp (Dp/Dm) 

= [1000/(2π) rev/min ] [( 0.5 in3/rev ) / ( 1 in3/rev ) ] = 500/(2π) rev/min 

Motor torque: 
� Σ Pin= Σ Pout + Σ Ploss + Σ (dEstored/dt) ; If Ploss & dEstored/dt are small compared to Pin: 

� Σ Pin ~ Σ Pout 
� Tp ωp ~ Tm ωm + Fcyl vcyl ~ Tm ωm + (∆pcyl Acyl) vcyl 
� Tm ~ [ Tp ωp - (∆pcyl Acyl) vcyl ] / ωm 

� We can not solve as we don’t know vcyl, we find vcyl via volumetric flow rate 
� Volumecyl = Acyl xcyl ; Qcyl = d(Volumecyl)/dt; Qcyl = d(Acylxcyl)/dt = Acyl vcyl 

� Qcyl = Qp = Qm therefore ωm Dm = ωp Dp = Acyl vcyl 
� vcyl = ωp Dp / Acyl

� Tm ~ [ Tp ωp - (∆pcyl Acyl) vcyl ] / ωm ~ [ Tp ωp - (∆pcyl Acyl) (ωp Dp / Acyl ) ] / ωm


� The “numerical plug and chug” is left to you, Tm = 8.91 in lbf
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Example III – Pump, motor, & cylinder cont.

Given the diagram, solve for Tp, Tm, and ωm


Note where power crosses into and out of the system boundary


Dp = 0.5 in3/rev Dm = 1 in3/rev 

Tp = ? 

Pump 

p1 

p1 = 10 psi 

2ππππ 

p2 = 100 psi 

p2 

Motor 

x 

Acyl = 5 in2 

p5 = 33.2 psi 

Valve 
p4 = 44 psi 

p3 

Fcyl p3 = 44 psi 

p3 

ωp = 1000 rpm 
Tm = ? 
ωm = ? 

Reservoir 
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Example III – Pump, motor, & cylinder cont.

Use a power balance on the pump to determine the pump torque: 

� Σ Pin= Σ Pout + Σ Ploss + Σ (dEstored/dt); If Ploss & (dEstored/dt) are small compared to Pin: 
Σ Pin = Σ Pout 
Tp ωp = ∆pp Qp 
Tp = ∆pp ( Qp ) / ωp = ∆pp (Dp ωp ) / ωp = ∆pp (Dp) 

(100psi – 10 psi)  0.5 in3/rev (1/2π) rev/rad = 7.16 in lbf 

� The solution to the rest of the problem is the solution to Example II 
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PROJECT I AND HWK 6
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PLANETARY GEAR 

TRAINS
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Planetary relationships (ala Patrick Petri)


Say the arm is grounded…. 
� Planet gears = idler gears 
' ω ri = − Ns 
' ω si Nr 

' ω ri =ωri −ωa 

' ω si =ωsi −ωa 

− Nsi = ωri −ωai 
Nri ωsi −ωai 

Now say the arm spins…. we can say 
ωωωω2 

Finding the train ratio: Say the ring is grounded, sun = input, arm = output 

− Nsi = 0 −ωai ωai Ns= 
Nri ωsi −ωai ωsi NR + Ns 
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Planetary gear systems: Arm as output
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THREADED 

MECHANISMS
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Threaded mechanisms: Geometry


Threaded mechanisms are used in applications such as: 
� Bolts

� Lead screws (i.e. mills and lathes)


General threaded mechanism geometry 
Control volume 

Torqueapplied 
Forceexert 

Lead, l 

Shaft with exterior threadsNut with interior threads 

vs 

ω 

s 

Usually, either the nut or the screw is grounded 

Figure above shows the nut grounded 
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Threaded mechanisms: Modeling power flow


From power balance for our control volume: 

ΣPin = [ΣPout ]+Σ 
d (Estored )  → Papplied = [Pexert + Ploss ]+ d (Estretch ) 

 dt  dt 

Power in via work by applied Torque : Papplied = Tapplied ( )⋅ωω 

vPower out via work done by exerted Force : Pexert = Fexert ( )⋅ v 

ωPower loss due to friction Torque : Ploss = Tfriction ( )⋅ω 

Rate of energy storage in stretched "cylinder": Pstretch = Fstretch ( ) ⋅ vsvs

From geometry : v = ( ω ) l Lead = l2π 
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