LECTURE 8

Hydraulic machines and systems II

Basic hydraulic machines & components

Graphical Nomenclature

• Arrows show direction of flow

© 2002 MIT PSDAM LAB

Example I – Pump & cylinder

Solve for the the <u>velocity</u> of piston and the <u>force</u> exerted by piston

Note where power crosses into and out of the system boundary

 $T_p = 10$ in-lbf

© 2002 MIT PSDAM LAB

Force exerted by piston:

•	F _{cyl}	= Α _{cyl} Δp _{cyl}
•	$\Delta \mathbf{p}_{cyl}$	= p ₃ - p ₄
•	F _{cyl}	= 10 in ² 1000 ^{lbf} / _{in²}

= 1014 psi – 14 psi = 1000 psi = 10 000 lbf

If we know F and v, we know the power output of the cylinder

- At the boundary of the hydraulic system we see one inflow & one outflow of power
- From the power balance:
- $\Sigma P_{in} = \Sigma P_{out} + \Sigma P_{loss} + \Sigma (dE_{stored}/dt)$; If $P_{loss} \& (dE_{stored}/dt)$ are small compared to P_{out} :

$$\begin{array}{l} \checkmark \quad \Sigma \ \mathsf{P}_{\mathsf{in}} \quad \sim \Sigma \ \mathsf{P}_{\mathsf{out}} \\ \checkmark \quad \mathsf{T}_{\mathsf{p}} \ \omega_{\mathsf{p}} \quad \sim \mathsf{F}_{\mathsf{cyl}} \ \mathsf{v}_{\mathsf{cyl}} \end{array}$$

$$\begin{array}{ccc} \checkmark & \mathsf{v}_{\mathsf{cyl}} & & \sim (\mathsf{T}_{\mathsf{p}} \ \omega_{\mathsf{p}} \)/ \ \mathsf{F}_{\mathsf{cyl}} \\ & - & & = (10 \ \text{in-lbf}) \ (1000/2\pi^{\ \mathrm{rev}}/_{\mathrm{min}}) \ (2\pi^{\ \mathrm{rad}}/_{\mathrm{rev}}) \ (1/60^{\ \mathrm{min}}/_{\mathrm{s}}) \ / \ (10 \ 000 \ \mathrm{lbf}) \\ & - & & = 0.0167 \ \mathrm{in/s} \end{array}$$

- Always check and list your units!!!

Example II – Pump, motor, & cylinder

Given the diagram, solve for \textbf{T}_{m} and $\boldsymbol{\omega}_{m}$

© 2002 MIT PSDAM LAB

Example II – Pump, motor, & cylinder cont.

Motor speed: We know that the mass flow rate through the pump and motor has to be the same. As we assume the liquid is incompressible, this means the volumetric flow rate is the same:

$$\begin{array}{ll} \odot & {\sf Q}_p & = \omega_p \; {\sf D}_p = {\sf Q}_m = \omega_m \; {\sf D}_m \\ \odot & \omega_m & = \omega_p \; ({\sf D}_p / {\sf D}_m) \\ & = [1000/(2\pi) \; {^{\rm rev}}/_{\rm min} \;] \; [(\; 0.5 \; {\rm in}^3/_{\rm rev} \;) \; / \; (\; 1 \; {\rm in}^3/_{\rm rev} \;) \;] & = 500/(2\pi) \; {^{\rm rev}}/_{\rm min} \end{array}$$

Motor torque:

- Σ P_{in}= Σ P_{out} + Σ P_{loss} + Σ (dE_{stored}/dt); If P_{loss} & dE_{stored}/dt are small compared to P_{in}:
 Σ P_{in} ~ Σ P_{out}
 T_p ω_p ~ T_m ω_m + F_{cyl} v_{cyl} ~ T_m ω_m + (Δp_{cyl} A_{cyl}) v_{cyl}
 T_m ~ [T_p ω_p (Δp_{cyl} A_{cyl}) v_{cyl}] / ω_m
 We can not solve as we don't know v_{cyl}, we find v_{cyl} via volumetric flow rate
 - $\begin{array}{l} \checkmark \quad \text{Volume}_{cyl} = A_{cyl} \, x_{cyl} \, ; \qquad Q_{cyl} = d(\text{Volume}_{cyl})/dt; \qquad Q_{cyl} = d(A_{cyl} x_{cyl})/dt = A_{cyl} \, v_{cyl} \\ \checkmark \quad Q_{cyl} = Q_p = Q_m \quad \text{therefore} \quad \omega_m \, D_m = \omega_p \, D_p = A_{cyl} \, v_{cyl} \\ \checkmark \quad v_{cyl} = \omega_p \, D_p \, / \, A_{cyl} \\ \checkmark \quad T_m \, \sim \left[\, T_p \, \omega_p (\Delta p_{cyl} \, A_{cyl}) \, v_{cyl} \, \right] \, / \, \omega_m \, \sim \, \left[\, T_p \, \omega_p (\Delta p_{cyl} \, A_{cyl}) \, (\omega_p \, D_p \, / \, A_{cyl}) \, \right] \, / \, \omega_m \end{array}$

✓ The "numerical plug and chug" is left to you, $T_m = 8.91$ in lbf

Example III – Pump, motor, & cylinder cont.

Given the diagram, solve for T_p , T_m , and ω_m

Note where power crosses into and out of the system boundary

Example III – Pump, motor, & cylinder cont.

Use a power balance on the pump to determine the pump torque:

- $\Sigma P_{in} = \Sigma P_{out} + \Sigma P_{loss} + \Sigma (dE_{stored}/dt); \text{ If } P_{loss} \& (dE_{stored}/dt) \text{ are small compared to } P_{in}:$ $\Sigma P_{in} = \Sigma P_{out}$ $T_{p} \omega_{p} = \Delta p_{p} Q_{p}$ $T_{p} = \Delta p_{p} (Q_{p}) / \omega_{p} = \Delta p_{p} (D_{p} \omega_{p}) / \omega_{p} = \Delta p_{p} (D_{p})$ $(100\text{psi} - 10 \text{ psi}) \quad 0.5 \text{ in}^{3}/_{rev} (1/2_{\pi})^{rev}/_{rad} = 7.16 \text{ in lbf}$
- The solution to the rest of the problem is the solution to Example II

PROJECT I AND HWK 6

PLANETARY GEAR TRAINS

Planetary relationships (ala Patrick Petri)

Finding the train ratio: Say the ring is grounded, sun = input, arm = output

$$-\frac{N_{si}}{N_{ri}} = \frac{0 - \omega_{ai}}{\omega_{si} - \omega_{ai}} \longrightarrow \frac{\omega_{ai}}{\omega_{si}} = \frac{N_s}{N_R + N_s}$$

Planetary gear systems: Arm as output

THREADED MECHANISMS

Threaded mechanisms: Geometry

Threaded mechanisms are used in applications such as:

- Bolts
- Lead screws (i.e. mills and lathes)

General threaded mechanism geometry

Figure above shows the nut grounded

Threaded mechanisms: Modeling power flow

From power balance for our control volume:

$$\Sigma P_{in} = \left[\Sigma P_{out}\right] + \Sigma \left(\frac{d(E_{stored})}{dt}\right) \quad \rightarrow \quad P_{applied} = \left[P_{exert} + P_{loss}\right] + \frac{d(E_{stretch})}{dt}$$

Power in via work by applied Torque : $P_{applied} = \overline{T}_{appl}$

$$\mathbf{P}_{applied} = \vec{\mathbf{T}}_{applied} \left(\vec{\omega} \right) \cdot \vec{\omega}$$

Power out via work done by exerted Force : $P_{exert} = \vec{F}_{exert}(\vec{v}) \cdot \vec{v}$

Power loss due to friction Torque :

$$\mathbf{P}_{loss} = \bar{\mathbf{T}}_{\text{friction}} \left(\vec{\omega} \right) \cdot \vec{\omega}$$

Rate of energy storage in stretched "cylinder":

$$\mathbf{P}_{stretch} = \vec{\mathbf{F}}_{stretch} \left(\vec{\mathbf{v}}_s \right) \cdot \vec{\mathbf{v}}_s$$

From geometry:
$$v = \left(\frac{\omega}{2\pi}\right)l$$
 Lead = /