# **LECTURE 9**

## Hydraulic machines III and EM machines

# 2.000 DC Permanent magnet electric motors

## **Topics of today's lecture:**

- Project I schedule revisions
- Test
- Bernoulli's equation

#### • Electric motors

- ✓ Review I x B
- ✓ Electric motor contest rules (optional contest)

#### • Class evaluations

# **Project schedule updates**

| <u>Approx</u> |                                                               |                         |        |
|---------------|---------------------------------------------------------------|-------------------------|--------|
| <b>START</b>  | WHAT                                                          | DUE                     | PTS    |
| 07 March      | Project mgmt spread sheet                                     | 14 March                | [ 20 ] |
| 12 March      | HMK 6: 1 page concept & equations + SIMPLE 1 page explanation | 02 April                | [ 80 ] |
| 19 March      | Gear characteristics 1 page explanation                       | 02 April                | [10]   |
| 19 March      | CAD files & DXF files                                         | 09 April (via zip disk) | [ 90 ] |
|               |                                                               | Σ:                      | 200    |

# **BERNOULLI'S EQUATION**

**<u>Streamline</u>**: Line which is everywhere tangent to a fluid particle's velocity.



For a steady flow, stream lines do not move/change

A stream line is the path along which a fluid particle travels during steady flow.

For one dimensional flow, we can assume that pressure (p) and velocity (v) have the same value for all stream lines passing through a given cross section

Bernoulli's equation for steady flow, constant density:  $\frac{v^2}{2} + \frac{1}{\rho} \cdot p \cdot +g \cdot z = Constant$ 

## For two cross section (ends of control volume) located dx apart:



© 2002 MIT PSDAM LAB

**Stead flow momentum equation for Control Volume** 

From F = m a following a fluid mass

$$--\dot{m}_{in} \cdot v_{in} + \Sigma F_{\text{on CV}} = \dot{m}_{out} \cdot v_{out}$$



For a stead, there is no stored mass

$$\dot{m}_{in} = \dot{m}_{out} = \dot{m}$$

$$\downarrow$$

$$\rightarrow \dot{m} \cdot v_{in} + \Sigma F_{on CV} = \dot{m} \cdot v_{out} \longrightarrow \Sigma F_{on CV} = \dot{m} \cdot (v_{out} - v_{in})$$

$$\downarrow$$

$$v_{out} = v_{in} + \frac{dv}{dx} dx \longrightarrow \Sigma F_{on CV} = \rho \cdot A \cdot v \cdot \left(\frac{dv}{dx} dx\right)$$

## **Pressure force:**



## **Gravity:**



## Summation of pressure and gravity forces:

$$\Sigma F_{\text{on CV}} = p \cdot \mathbf{A} + p \cdot \left(\frac{dA}{dx}dx\right) - p \cdot \mathbf{A} - p \cdot \left(\frac{dA}{dx}dx\right) - \mathbf{A} \cdot \left(\frac{dp}{dx}dx\right) - (\text{terms}) \cdot dx^2 - \mathbf{m} \cdot g \cdot \left(\frac{dz}{dx}dx\right)$$



## **Equating momentum flow and applied forces:**

$$\Sigma F_{\text{on CV}} = -\mathbf{A} \cdot \left(\frac{\mathrm{dp}}{\mathrm{dx}} \mathrm{dx}\right) - \rho \cdot \mathbf{A} \cdot g \cdot \left(\frac{\mathrm{dz}}{\mathrm{dx}}\right) \cdot \mathrm{dx} \qquad = \qquad \Sigma F_{\text{on CV}} = \rho \cdot \mathbf{A} \cdot \mathbf{v} \cdot \left(\frac{\mathrm{dv}}{\mathrm{dx}} \mathrm{dx}\right)$$

$$-A \cdot \left(\frac{dp}{dx}dx\right) - \rho \cdot A \cdot g \cdot \left(\frac{dz}{dx}\right) \cdot dx = \rho \cdot A \cdot v \cdot \left(\frac{dv}{dx}dx\right)$$

$$-\cancel{A} \cdot (dp) - \rho \cdot \cancel{A} \cdot g \cdot (dz) = \rho \cdot \cancel{A} \cdot v \cdot (dv)$$

Exact differentials for constant 
$$\rho$$
  

$$-\left(\frac{\mathrm{dp}}{\rho}\right) - g \cdot (\mathrm{dz}) = v \cdot (\mathrm{dv}) \longrightarrow \frac{v^2}{2} + \frac{1}{\rho} \cdot p + g \cdot z = \text{Constant}$$

# **Bernoulli's Equation: Assumptions**

## Flow along streamline

• B.E. can only be used between points on the SAME streamline.

## **Inviscid flow:**

- Loss due to viscous effects is negligible compared to the magnitudes of the other terms in Bernoulli's equation.
- Bernoulli's equation can't be used through regions where fluids mix:
  - ✓ Mixed jets & wakes (flow want to break up, swirl... resulting shear dissipates energy)
  - ✓ Pumps & motors
  - $\checkmark$  Other areas where the fluid is turbulent or mixing.



## **Stead state**

• Velocity of the flow is not a function of time, BUT!!! it can be a function of position.

## Incompressible

# **Bernoulli's Example – Pipe of variable diameter**



✓ Assumptions (along streamline, inviscid, stead state, incompressible)

**Bernoulli's equation between points A and B:** 

$$\frac{v_{A}^{2}}{2} + \frac{1}{\rho} \cdot p_{A} \cdot + g \cdot z_{A} = \frac{v_{B}^{2}}{2} + \frac{1}{\rho} \cdot p_{B} \cdot + g \cdot z_{B}$$

$$\text{Note: } z_{B} = z_{A}$$

$$\frac{v_{A}^{2}}{2} + \frac{1}{\rho} \cdot p_{A} = \frac{v_{B}^{2}}{2} + \frac{1}{\rho} \cdot p_{B} \xrightarrow{} (p_{B} - p_{A}) = \frac{\rho}{2} \cdot (v_{A}^{2} - v_{B}^{2})$$

© 2002 MIT PSDAM LAB

## **Bernoulli's Example – Pipe of variable diameter**



**Volume flow rate equality:** 

$$Q_A = Q_B = Q_C$$
 so  $A_A \cdot v_A = A_B \cdot v_B = A_C \cdot v_C$ 

$$v_B^2 = v_A^2 \cdot \left(\frac{A_A}{A_B}\right)^2$$

$$(\mathbf{p}_{\mathrm{B}} - \mathbf{p}_{\mathrm{A}}) = \frac{\rho}{2} \cdot \left( \mathbf{v}_{\mathrm{A}}^{2} - \mathbf{v}_{\mathrm{A}}^{2} \cdot \left( \frac{\mathbf{A}_{\mathrm{A}}}{\mathbf{A}_{\mathrm{B}}} \right)^{2} \right) = \left( \frac{\rho}{2} \cdot \mathbf{v}_{\mathrm{A}}^{2} \cdot \left( 1 - \left( \frac{\mathbf{A}_{\mathrm{A}}}{\mathbf{A}_{\mathrm{B}}} \right)^{2} \right) \right)$$

$$\frac{A_A}{A_B} > 1$$
 so  $1 - \left(\frac{A_A}{A_B}\right)^2 < 1$  so the pressure drops

© 2002 MIT PSDAM LAB

# DC PERMANENT MAGNET MOTOR

# **Vector cross product review**

## **Vector cross products:**

 $\vec{A} \times \vec{B} = \vec{C}$ 

## **Mutual perpendicularity:**

 $\bar{C}$  is mutually  $\perp$  to  $\bar{A}$  and  $\bar{B}$ 

## Magnitude:

 $\left| \vec{C} \right| = \left| \vec{A} \right| \cdot \left| \vec{B} \right| \cdot \sin(\theta_{A-B})$ 



#### When:

• A & B are PARALLEL, the magnitude of (A X B) is 0

 $\theta_{\text{A-B}} = 0^{\circ} \rightarrow |\vec{C}| = |\vec{A}| \cdot |\vec{B}| \cdot \sin(0^{\circ}) = 0$ 

• A & B are **PERPENDICULAR**, the magnitude (A X B) is maximized

$$\theta_{\text{A-B}} = 90^{\circ} \rightarrow \left| \vec{\text{C}} \right| = \left| \vec{\text{A}} \right| \cdot \left| \vec{\text{B}} \right| \cdot \sin(90^{\circ}) = \left| \vec{\text{A}} \right| \cdot \left| \vec{\text{B}} \right|$$

Force on a conductor carrying a current through a magnetic field:

 $\vec{F}_{m} = \vec{I} \times \vec{B}$ Where:  $\vec{F}_{m} = Magnetic Force [N or lbf]$   $\vec{I}_{wire} = Current \left[Amps \text{ or } C\frac{m}{s}\right]$   $\vec{B} = Magnetic flux density \left[\frac{N \cdot s}{C \cdot m} \text{ or } \frac{Weber}{m^{2}}\right]$ 



# Magnetic torque on a simple electric machine

Force on a conductor carrying a current through a magnetic field:

For wire 3,  $\theta_{I-B}$  always = 90° so sin( $\theta_{I-B}$ ) always = 1

Force on wires 1 (to left) and 2 (to right) do not act to make wire rotate

$$\vec{\mathbf{F}}_{\mathrm{M}} = \vec{\mathbf{I}} \times \vec{\mathbf{B}} \longrightarrow \left| \vec{\mathbf{F}}_{\mathrm{M}} \right| = \left| \vec{\mathbf{I}} \right| \cdot \left| \vec{\mathbf{B}} \right| \cdot \sin(\theta_{I-B}) = \left| \vec{\mathbf{I}} \right| \cdot \left| \vec{\mathbf{B}} \right|$$

 $\vec{\mathrm{T}} = \vec{r} \times \vec{F} = \vec{r} \times (\vec{\mathrm{I}} \times \vec{\mathrm{B}}) \longrightarrow \vec{\mathrm{T}} = |\vec{r}| \cdot |\vec{\mathrm{I}}| \cdot |\vec{\mathrm{B}}| \cdot \sin(\theta_{R-F})$ 



© 2002 MIT PSDAM LAB

# Magnetic torque as a function of position



# What does the torque vs $\theta$ curve look like? [2 mins]



# **Torque on simple wire loop carrying current**





Torque curve of simple loop

# Keeping the machine in motion

## How to keep the machine moving

- $\circ$  Once the wire passes horizontal, T<sub>m</sub> tries to stop the wire from rotating.
- To keep the wire rotating, we must either shut off the current or reverse the current.
- If we turn off the current, the wire will continue to rotate due to its inertia.
- If we reverse the current direction when the wire reaches horizontal, T<sub>m</sub> will act to keep the wire spinning

If current continues in the same direction, Tm tries to stop wire from spinning.



Changing current direction will change the direction of Fm.

This in turn switches the direction of Tm. Tm will now act to keep the wire spinning.



# **Torque on switched wire loop carrying current**



# **DC Permanent magnet electric motor build & contest**

## In your kit you will find materials to build a simple electric motor

## How it works:

- Motor current shuts off when torque becomes negative
- Rotor inertia carries rotor until current turn on
- Repeated cycle keeps the motor spinning.

## We will have a contest (in your lab sessions) to determine winner

- How do you maximize energy input?
- How do you minimize losses?
  - ✓ Friction
- You may need to try various things
- Class record = 1800 RPM!

## **Prizes**

- Fastest motor = \$20 Cheesecake Factory gift certificate
- Record breaker = Keep Lego kit at end of class

# **Torque on switched wire loop carrying current**



# **DC Permanent magnet electric motor build & contest**

## **Contest rules:**

- The contest is **OPTIONAL**
- Motor may only contain the materials in your kit and a roll of life savers
- You may use the contents of your tool kits to help shape/make the motor
- You may not use any other tools/machines to make the motor
- Any wire coil must be wound around the battery or the roll of life savers
- You may obtain up to 3 ft of additional wire from a TA if you need it
- Your motor may only be powered by our power source (fresh D battery)
- We will test them in lab next week