
LECTURE 9

Hydraulic machines III and EM machines 
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2.000 DC Permanent magnet electric motors


Topics of today’s lecture: 
� Project I schedule revisions 

� Test 

� Bernoulli’s equation 

� Electric motors 
� Review I x B 
� Electric motor contest rules (optional contest) 

� Class evaluations 

© 2002 MIT PSDAM LAB 



ΣΣΣ

Project schedule updates

Approx


START WHAT DUE PTS

07 March Project mgmt spread sheet 

12 March HMK 6: 1 page concept & equations 
+ SIMPLE 1 page explanation 

19 March	 Gear characteristics 
1 page explanation 

19 March CAD files &  DXF files 

14 March [ 20 ] 

02 April [ 80 ] 

02 April [ 10 ] 

09 April (via zip disk) [ 90 ] 

Σ: 200 
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BERNOULLI’S EQUATION
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Streamlines


Streamline: Line which is everywhere tangent to a fluid particle’s velocity. 

Stream Line 
VA 

V
Bz g 

For a steady flow, stream lines do not move/change 

A stream line is the path along which a fluid particle travels during steady flow. 

For one dimensional flow, we can assume that pressure (p) and velocity (v) have 
the same value for all stream lines passing through a given cross section 

v2 1
Bernoulli’s equation for steady flow, constant density: 

2 
+ 

ρ
⋅ p ⋅ + g ⋅ z = Constant 
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Bernoulli derivation


For two cross section (ends of control volume) located dx apart: 

Somethingin Somethingout = Somethingin + d(Something) dx 
dx 

dx


dv
dx
vout= vin +

dx


dAAout=Ain + dx

dx


Differntial changes with dx


pout=pin + dp
dx

dx


dz
dx
zout=zin +

dx
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Bernoulli derivation


Stead flow momentum equation for Control Volume 

From F = m a following a fluid mass dv 
v v + dx 

mC in ⋅ vin + ΣFon CV = mC out ⋅ vout dx 

For a stead, there is no stored mass 
dx 

mC in = mC out = mC 

mC ⋅ vin + ΣFon CV = mC ⋅ vout ΣFon CV = mC ⋅ (vout - vin ) 

dv vout = vin + 
dx 

dx ΣFon CV = ρ ⋅ A ⋅ v ⋅  
dv dx 

 dx 
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Bernoulli derivation


Pressure force:


dx ]
)

dA / dx 

A + (

dx ] [
)

dP / dx

z

dx)


dA / dx

p A 

[p + (p( 
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Bernoulli derivation


Gravity: 

z 

g m ⋅  dz  m ⋅ g ⋅ 
 dx 

 = −Fx 
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Bernoulli derivation


Summation of pressure and gravity forces: 
~ 0 

ΣFon CV =  
 

 ⋅ ⋅  
 

 
 
 

 ⋅ + ⋅ 
dx 
dA p -A p -dx 

dx 
dA p A p dx  − A ⋅  

dp dx  − (terms ⋅ dx) 2 − m ⋅ g ⋅  
dz 

 
  dx   dx  

ΣFon CV = −A ⋅  
dp dx  − m ⋅ g ⋅  

dz 
 m = ρ ⋅ A ⋅ dx 

 dx   dx  

ΣFon CV = −A ⋅  
dp dx  − ρ ⋅ A ⋅ g ⋅  

dz 
 ⋅ dx 

 dx   dx  
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Bernoulli derivation


Equating momentum flow and applied forces: 

ΣFon CV = −A ⋅  
dp dx  − ρ ⋅ A ⋅ g ⋅  

dz 
 ⋅ dx = ΣFon CV = ρ ⋅ A ⋅ v ⋅  

dv dx  
 dx   dx   dx  

− A ⋅  
dp dx  − ρ ⋅ A ⋅ g ⋅  

dz 
 ⋅ dx = ρ ⋅ A ⋅ v ⋅  

dv dx  
 dx   dx   dx  

− ( )  ( ) A ρ dzA dpA ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ − ⋅ g ρ v ⋅ ( )dv 

Exact differentials for constant ρ 

− 
 dp 

 − g ⋅ ( )⋅ = v ⋅ (dv) v2 
+ 1 ⋅ p + g ⋅ z = Constant 

 ρ 
 dz 

2 ρ 
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Bernoulli’s Equation: Assumptions


Flow along streamline 
� B.E. can only be used between points on the SAME streamline. 

Inviscid flow: 
�	 Loss due to viscous effects is negligible compared to the magnitudes of the other 

terms in Bernoulli’s equation. 
� Bernoulli’s equation can’t be used through regions where fluids mix: 

� Mixed jets & wakes (flow want to break up, swirl… resulting shear dissipates energy) 
� Pumps & motors 
� Other areas where the fluid is turbulent or mixing. 

Stream lines Mixing = Can’t Use Bernoulli’s Equation 
You can not use Bernoulli’s Equation 
through jets or turbulent areas 

Mixed Jet 

Stead state 
� Velocity of the flow is not a function of time, BUT!!! it can be a function of position. 

Incompressible 

© 2002 MIT PSDAM LAB 



���

Bernoulli’s Example – Pipe of variable diameter


Given vA, find the pressure difference between A & B as a function of AA, 
AB, and vA. Is this a rise or drop in pressure? 

z g 
A B C 

� Assumptions (along streamline, inviscid, stead state, incompressible) 

Bernoulli’s equation between points A and B: 
2 1 2 1 

2 

Note 

2
A 
2 

v

vA + 
ρ

⋅ pA ⋅ + g ⋅ zA = vB + 
ρ

⋅ pB ⋅ + g ⋅ zB2 

: zB = zA 

1 2 1+ 
ρ

⋅ pA = vB + 
ρ

⋅ pB (pB − pA ) = ρ ⋅ (vA
2 − vB

2 )
2 2 
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Bernoulli’s Example – Pipe of variable diameter


z g 
A B C 

(pB − pA ) = ρ ⋅ (vA
2 − vB

2 )
2 

Volume flow rate equality: 
QA = QB = QC so AA ⋅ vA = AB ⋅ vB = AC ⋅ vC 

2 

vB
2 = vA

2 ⋅ 

 

AA 
 

 AB 


 
(pB − pA ) = ρ ⋅  vA

2 − vA
2 ⋅ 
 AA  

2 
 = 

2 

  AB 


  

 
 

 



 


 

 

  




 

 
− ⋅ ⋅ 

2 

B 

A 2 
A A

A1v
2 
ρ

2
AA > 1 so 1− 

 AA  < 1 so the pressure drops!
AB  AB 

 
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DC PERMANENT

MAGNET MOTOR


© 2002 MIT PSDAM LAB 



� � �

� � �

Vector cross product review


Vector cross products: 
� � � 
A× B = C 

z 
x 

y 

Mutual perpendicularity: 

C is mutually ⊥ to A and B 

Magnitude: 
� � � 
C = A ⋅ B ⋅ sin(θA-B ) A 

B 

C 

θA-B 

When: 
� A & B are PARALLEL, the magnitude of (A X B) is 0 

θA-B = 0o → C = A ⋅ B ⋅ sin(0o )= 0 

� A & B are PERPENDICULAR, the magnitude (A X B) is maximized 
� � � � �

θA-B = 90o → C = A ⋅ B ⋅ sin(90o )= A ⋅ B 
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� � �

� 

� 
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Magnetic force on a conductor (wire)

Force on a conductor carrying a current through a magnetic field: 

Fm = I × B 
Where: 

Fm = Magnetic Force [N or lbf ] 
 m Iwire = Current Amps or C 

s  

 N ⋅s Weber B = Magnetic flux density  C ⋅m 
or 

m2  

CONDUCTOR / WIRE 

MAGNETIC FLUX DENSITY, B 

CURRENT, Iwire z 
x 

y 

MAGNETIC FORCE, Fm 
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θθθ θθθ

� � � � � �

� � �

� � �

� 

Magnetic torque on a simple electric machine


Force on a conductor carrying a current through a magnetic field: 

For wire 3, θI-B always = 90o so sin(θI-B) always = 1 
Force on wires 1 (to left) and 2 (to right) do not act to make wire rotate 

� � � � � 
FM = I × B FM = I ⋅ B ⋅sin(θ I −B ) = I ⋅ B 

T = r × F = r × (I × B) T = r ⋅ I ⋅ B ⋅sin(θR−F ) 

x 

y 

z 

Fm1 2 

y 

z 

B 

Iwire Fm 

SIDE VIEW OF MACHINE 

3 

θθθθR-FθθθθI-B 

Tm 
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θθθ

Magnetic torque as a function of position


B

θθθθR-F 

y 

Battery 

x 

y 

zFm 

Iwire Fm z 

R 

Tm 
SIDE VIEW 

Maximum Torque θR-F = 90o 

Fm 

R 

θθθθR-F 

Tm 

Time 0 

Torque Decreases as 
sin(θR-F ) Decreases 

Fm 

R 

θθθθR-F 

Tm 

R & Fm Parallel so Torque = 0 

R 

Torque Reverses Direction as 
sin(θR-F ) is now negative. Note 

θR-F is in opposite direction. 

Fm 

θθθθR-F 

R 

Tm 

Time 3 

Fm Tm = 0 

Time 1 Time 2 
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θθθ

30 

0 

15

0o 

What does the torque vs θ curve look like? [2 mins]


Fm 

θθθθR-F 

Tm 

SIDE VIEW 

y 

z 

R 

45 

Seconds 
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Torque on simple wire loop carrying current


A


Side view of simple loop 

B 

D 

+TMAX 

T = 0


-TMAX 

A B DD C 

Torque curve of simple loop
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Keeping the machine in motion


How to keep the machine moving 
� Once the wire passes horizontal, Tm tries to stop the wire from rotating. 
� To keep the wire rotating, we must either shut off the current or reverse the current. 
� If we turn off the current, the wire will continue to rotate due to its inertia. 
� If we reverse the current direction when the wire reaches horizontal, Tm will act to 

keep the wire spinning 

If current continues in the same direction, 
Tm tries to stop wire from spinning. 

Fm 

θθθθR-F 

R 

Tm 

At time 3 Without Current Switch 

Changing current direction will change the direction of Fm. 

This in turn switches the direction of Tm. Tm will now act to 
keep the wire spinning. 

Fm 

θθθθR-F 

R 

Tm 

At time 3 With Current Switch 
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Torque on switched wire loop carrying current


Side view of switched loop 

C 

B 

A 

D 

+TMAX 

T = 0


-TMAX 

A B DD C 

Torque curve of switched loop
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DC Permanent magnet electric motor build & contest

In your kit you will find materials to build a simple electric motor 

How it works: 
� Motor current shuts off when torque becomes negative 
� Rotor inertia carries rotor until current turn on 
� Repeated cycle keeps the motor spinning. 

We will have a contest (in your lab sessions) to determine winner 
� How do you maximize energy input? 
� How do you minimize losses? 

� Friction 
� You may need to try various things 
� Class record = 1800 RPM! 

Prizes 
� Fastest motor = $20 Cheesecake Factory gift certificate 
� Record breaker = Keep Lego kit at end of class 
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Torque on switched wire loop carrying current


Side view of switched loop 

C 

B 

D 

+TMAX 

T = 0


-TMAX 

A B DD C 
A


Torque curve of switched loop
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DC Permanent magnet electric motor build & contest

Contest rules: 

� The contest is OPTIONAL

� Motor may only contain the materials in your kit and a roll of life savers

� You may use the contents of your tool kits to help shape/make the motor

� You may not use any other tools/machines to make the motor

� Any wire coil must be wound around the battery or the roll of life savers

� You may obtain up to 3 ft of additional wire from a TA if you need it

� Your motor may only be powered by our power source (fresh D battery)

� We will test them in lab next week
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