Solid Modeling & Basic Design Intent

Why Solid Modeling & Design Intent?

Why Solid Modeling?

- Design is a process of constant change and iteration
- 98% of all machines are now designed/made using Solid Modeling (SM)
- SM allows designers to make large/sweeping changes with little re-work of prints

Why Design Intent?

- To minimize re-work, the computer must know what you intend
- Design Intent = How you wish the design/model to be (even if changed)
- You MUST THINK AHEAD & build design intent into your model
- You MUST NAME ALL OF THE 3D FEATURES IN YOUR MODEL TREE

EX. Design Intent = Parts Remain Symmetric & Design Change = Length

Solid Modeling is 90% design intent and 10% knowing the program

A large part of your <u>SM grades will be based on use of proper design intent</u>

Symmetric Design Intent (DI) For Parts & Assemblies

Purpose:

• Demonstrate need for DI & give practice in Part-Assembly design intent

Today's Exercise:

- You will given the part and assembly files for a CAD model with poor design intent
- You will see the effects of poor DI
- You will correct the design intent

Why you need this:

- Similar to the design intent required for GEAR PUMPS
- Will save you hours on future projects at MIT

Design intent for this CAD model: A & B are symmetric about X,Y,Z axes

How the Parts Were Built

PART A:

Blind Extrusion

Depth = 15 inches

Note how the sketch is centered

PART B:

Blind Extrusion

Depth = 2 inches

Note how the sketch is centered

How the Parts Were Located In Assembly

Putting parts into assembly file:

- Unfortunately, SolidWorks may "fix" the first part placed into an assembly. When SolidWorks does this, the first part (in this case Part A) is <u>ARBITRARILY</u> fixed in the 3D space of the assembly file.
- This is POOR SOLID MODELING PRACTICE!!!!
- DO NOT TRY TO FIX THIS NOW, we will fix it momentarily

How the Parts Were Mated

The parts were mated as shown below:

- You can see details on how the parts were mated by:
 - Clicking on the "+" sign to the left of the MateGroup1 icon in the feature tree
 - Then Left Click ONCE on the mates to see which planes were mated (I.e. below)
 - As you click through the mates, they will highlight the mated planes/features
 - The planes below should be highlighted as you click through
- In the next steps, we will see why these mates reflect POOR DESIGN INTENT

Results of Poor Design Intent

Changing Model Dimensions

- Make sure you are working on A-B_Assembly.sldasm, Not a part file
- Set the view type to: No Hidden Lines
- Double Click on Part A (long skiny part) in the window to see its dimensions
- Change the 15.00 inch dimension to 4 inches
- Rebuild the model

Results of Poor Design Intent

Changing Model Dimensions

• Part A is no longer centered in Part B!!!! The design intent is not maintained.

- Spend ~ 3 Minutes changing other dimensions and extrusion depths in parts A and B (by double clicking on the parts as on the previous slide).
- You will be able to see how the design intent is not preserved.
- Next we will fix the model in real time on the screen so that the proper design intent is preserved.
- If you finish early, think about how you would fix the model. There is a hint on the next slide. Call me if you figure it out.

Symmetric Design Intent in Assemblies

Centered Design Intent in Parts - Why?

Original Intent Was to Have Hole Centered

Intent Not Maintained During Design Change

You would have to re-edit the sketch to fix!

Centered Design Intent in Parts/Sketches

CLASS EXERCISE: ALL BUTTONS ARE IN THE SKETCHING TOOL BAR

Centered Design Intent in Parts/Sketches

Centre Mid-Plane Extrusions center an extruded piece about its sketch plane STEP 5: Extrude as a MID-PLANE Extrusion @ Depth = 2 inches (Note This step centers about the 3rd plane) STEP 6: Click OK, then click on Planes 1,2,3 in the feature tree window to see if part is centered	Extrude Feature End Condition Type: Mid Plane Depth: 20000r Selected Items: Draft While Extruding Angle: Ideg Draft Outward Settings for: Direction 1	OK Cancel <u>H</u> elp	2.0000 Centered	Centered
	STEP 5: Extrude as a MID-PLANE Extrusion @	 Depth = 2	<u>e inches (</u> Note This step centers	it its sketch plane s about the 3rd plane)

RESULTS: You should now have a part centered about the origin in ALL 3 DIRECTIONS

Symmetric Design Intent in Assemblies

Parent - Child Relationships & Changing Design Intent

Parent - Child Relationships & Changing Design Intent

Parent - Child Relationships & Changing Design Intent

Symmetric Design Intent in Assemblies: Exercise you should have downloaded the shaft and gear from the web site

- 2. MAKE THE KEY BY YOURSELF (0.0125" Diameter x 0.5" Long).
- 3. ASSEMBLE THE GEAR-KEY-SHAFT, THEN ASK ME TO CHECK OFF

1.

