2.003 Fall 2003 Complex Exponentials

Complex Numbers

e Complex numbers have both real and imaginary components. A complex
number r may be expressed in Cartesian or Polar forms:

r = a+ jb (cartesian)

= |rle® (polar)

The following relationships convert from cartesian to polar forms:

Magnitude |r| = +Va?+ b?
{ tan~! 2 a>0

Angl =
ngle ¢ tan_lgiﬂ a<0

e Complex numbers can be plotted on the complex plane in either
Cartesian or Polar forms Fig.1.
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Figure 1: Complex plane plots: Cartesian and Polar forms

Euler’s Identity
Euler’s Identity states that

el?® =cos¢ + jsing
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This can be shown by taking the series expansion of sin, cos, and e.
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Complex Exponentials

e Consider the case where ¢ becomes a function of time increasing at a
constant rate w

o(t) = wt.

then r(t) becomes

(t) =

Plotting r(¢) on the complex plane traces out a circle with a constant
radius = 1 (Fig. 2 ). Plotting the real and imaginary components of r(t)
vs time (Fig. 3 ), we see that the real component is Re{r(t)} = coswt
while the imaginary component is Im{r(t)} = sinwt.

e Consider the variable r(¢) which is defined as follows:

r(t) =e*

where s is a complex number

S=0+jw
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Figure 2: Complex plane plots: r(t) = e/**!
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Figure 3: Real and imaginary components of r(¢) vs time

e What path does r(t) trace out in the complex plane ? Consider

r(t) = et = Tt — ot it

One can look at this as a time varying magnitude (") multiplying a point
rotating on the unit circle at frequency w via the function e/**. Plotting
just the magnitude of e/t vs time shows that there are three distinct
regions (Fig. 4 ):

1. ¢ > 0 where the magnitude grows without bounds. This condition is
unstable.

2. 0 = 0 where the magnitude remains constant. This condition is
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called marginally stable since the magnitude does not grow without
bound but does not converge to zero.

3. 0 < 0 where the magnitude converges to zero. This condition is
termed stable since the system response goes to zero as t — oo .
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Figure 4: Magnitude r(t) for various o.

Effect of Pole Position

The stability of a system is determined by the location of the system poles.
If a pole is located in the 2nd or 3rd quadrant (which quadrant determines
the direction of rotation in the polar plot), the pole is said to be stable.
Figure 5 shows the pole position in the complex plane, the trajectory of
r(t) in the complex plane, and the real component of the time response for
a stable pole.

If the pole is located directly on the imaginary axis, the pole is said to be
marginally stable. Figure 6 shows the pole position in the complex plane,
the trajectory of r(t) in the complex plane, and the real component of the
time response for a marginally stable pole.

Lastly, if a pole is located in either the 1st or 4th quadrant, the pole is said
to be unstable. Figure 7 shows the pole position in the complex plane, the
trajectory of r(t) in the complex plane, and the real component of the time
response for an unstable pole.
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Figure 5: Pole position, r(t), and real time response for stable pole.
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Figure 6: Pole position, r(t), and real time response for marginally stable
pole.
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Figure 7: Pole position, r(t), and real time response for unstable pole.



