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The Laplacetransformis a standardiool associatedvith the analysisof signals,models,and control
systemsandis consequentiytaughtin someform to almostall engineeringstudents.The bilateral and
unilateral forms of the Laplacetransformare closely related,but have somewhatdifferent domainsof
application.The bilateraltransformis mostfrequentlyseenin the contextof signal processingwhereas
theunilateraltransformis mostoftenassociatedavith the studyof dynamicsystenresponsevheretherole
of initial conditionstakeson greatersignificanceln our teachingwe havefound somesignificantpitfalls
associatedvith teachingour studentsto understandand apply the Laplacetransform.Theseconfusions
extendto the presentatiorf this materialin manyof the availablemathematiceindengineeringextbooks
aswell.

The most significantconfusionin much of the textbook literatureis how to deal with the origin in
the applicationof the unilateral Laplacetransform.That is, many texts presentthe transformof a time

function f(t) as
£irwy = [ et ®

without properly specifiying the meaningof the lower limit of integration. Said informally, doesthe
integralincludetheorigin fully, partially, or notatall? Thisissuebecomesignificantassoonassingularity
functionssuchasthe unit impulseareintroduced.While it is not possibleto devotefull attentionto this
issuewithin the contextof a typical undergraduateourse,this “skeletonin the closet” as Kailath [8]
calledit needgo be broughtout fully into thelight. Our purposein writing this articleis to put forward a
consistensetof Laplacetransformdefinitionsand propertieswhich allow the correctanalysisof dynamic
systemsin the presenceof arbitrary initial conditions and where the systemis driven by functions
which include singularities.We also presentreasonablemathematicalsupportfor theseproperties,as
well as a consistenttreatmentof singularity functions, without becomingfully enmeshedn the theory

of generalizedunctions,which quickly becomegoo far divorcedfrom applications.
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To properly learn about and apply the unilateral Laplace transform, studentsneedto be taughta
consistentset of propertiesthat correctly handleproblemswith arbitrary inputs and initial conditions.

The properform of the unilateralLaplacetransformfully includesthe origin

cirwy = [ et (2)

asindicatedby the 0~ notation. Thus the integral includesinterestingeventswhich happenat ¢t = 0,

suchasimpulsesor higher-ordesingularityfunctions,stepsandthe beginningsof othertransientsSome
textsrefer to this form asthe £_ transform.However,sincewe regardthis asthe only correctusageof

the unilateraltransformin the contextof dynamicsystemswe will omit any additionalnotation,anduse
the symbol £ to representhe transformas definedin (2).

Following from this definition of the transformis the time-derivativerule

L{F(t)} = sF(s) = f(07) ©)

wherebythe initial conditionsexistingbeforeany¢ = 0 transientare broughtinto the analysis.Note that
the 0~ indicatesthatthe responsewill be calculatedin termsof whatwe term the pre-initial conditions.

Also associatedvith this definition is the the initial-value theorem

lim sF(s) = f(0%). 4)

s—o00-1
wherethe notationoco - 1 indicatesthat the limit is takenalong the positive real axis. It is interesting
to note herethat the value calculatedby (4) is associatedvith the post-initial valuesat ¢t = 0". This
form of the initial-value theoremis the correctresult,andit is alsothe desiredone, sincewe are mostly
interestedn the initial value after any discontinuitiesat ¢ = 0.
More generally,if F(s) is ableto be written asa polynomial plus a function F(s) convergingto zero
ass — oo - 1 then

lim sF(s) = f(0+). (5)

s—o00-1
Theseproperties(3), (4), (5) and someextensionsare developedmorefully in the appendices.

With this overview in hand, the remainderof the paperis organizedas follows: We first motivate
the discussionwith two simple dynamic systemexamplessuchas might be presentedn a sophomore
engineeringcourse.The response®f thesesystemsare calculatedvia the Laplacetransformdefinition
and propertiespresentedabove.Next, we discussthe applicationof the Laplacetransformto abstract
signals,independenbf any dynamic systemscontext,to clarify the needfor the consistentdefinitions

presentedbove.Finally, thearticle concludeswith appendicesvhich introduceanddevelopthetransform
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Fig. 1. Schematioof a high-passelectricalfilter driven by an“unstep.” The initial stateof this systemis the capacitorvoltage

ve(07) = 1, andthusthe initial outputvoltageis vo(07) = 0.

propertieswith reasonablenathematicakupport.in orderto do this, we needto think carefully about
how singularityfunctionsaredefined,how theseare combinedwith regularfunctionsto form generalized
functions,and how requiredmathematicabperationson thesegeneralizedunctionscan be consistently
defined.

I. APPLICATION EXAMPLES

In this sectionwe present pair of exampleproblemsdrawnfrom electricalandmechanicaéngineering,
respectively.To correctly calculatethe transientresponseof thesesystemsrequirescarein applyingthe

transform(2); the setof propertiespresentedabove(3), (4), and (5) yield the correctanswer.

A. First-Order High-PassFilter Driven by an “Unstep”
First, considerthe high-pasdfilter shownin Figure 1, which is driven by an “unstep” function

1 t<0
0 t>0

’U](t) =

The Laplacetransformof this input is
L{vr(t)} = Vi(s) =0,

which certainly seemsuninteresting.We also specify the initial condition vo(0~) = 0, and thus the
capacitoris initially chargedto v-(07) = 1V.
To find the total systenmresponséo theinitial stateandthis input, we startwith the differentialequation

d V0
C&(’l}[ —UO> — ﬁ =0
or

dvo V0 dvy

& TRC at
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Fig. 2. Responsef the high-pasdilter driven by an “unstep.”

The Laplacetransformof this differential equation,usingthe correctform of the derivativerule, is

sV,(s) —vo(07) + ‘;Oz(g) = sVi(s) —vr(07),

which reducego

sVi(s) —vr(07) +vo(07)

Vols) = s+ 1/RC

Theassociategre-initial valuesarev;(0~) = 1 andvp(0~) = 0, andwe havealreadycalculatedV;(s) =
0. Thusthe expressiorsimplifiesto

—1

Vols) = /RO

(6)
Inverting this transformgives the outputtime waveformas

vo(t) = —e /FC: ¢ >0,
which is shownin Figure2 alongwith theinput waveform.We canfurtherapplytheinitial valuetheorem
to (6) as:

vo(01) = lim sV,(s) = —1.

S§—00

Of course,simple time-domainargumentdead to thesesameresultswith lesseffort, but our intention

hereis to demonstratehe properapplicationof Laplacetechniquesn solving suchproblems.
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Fig. 3. An idealizedautomobile-suspensiosystemapproachinga rectangularspeedbump. In the analysis,the centerof the

wheelis assumedo follow the bump exactly.

B. Second-OrdeCar Suspension

Anotherexamplewhich illuminatesthe properuseof the Laplacetransformtechniqueis the idealized
second-ordeautomobile-suspensiaystemshownin Figure 3. In this simplified model,we assumehat
the centerof the wheelfollows the stepcontourexactly,suchthatthe input motion z(t) takesthe form of
a unit step.We aretheninterestedn calculatingthe resultingcar body outputmotion y(¢). We examine
this responseinderthreesetsof initial conditionsin orderto give someinsightinto the typesof solutions
that might be calculatedwith the Laplacetechnique.

The differential equationdescribingthe systemis

mij = b(& — ) + k(z — y).

The Laplacetransformsof the derivativesare

L{i} = sX(s) —x(07),

L{g} = sY(s) = y(07),
and
L{j} = s"Y (s) — sy(07) —y(07).
Therefore the differential equationtransformsto
ms*Y (s) = msy(07) = my(0”) =
b(sX(s)—x(07)—sY(s)+y(07)) +

k(X(s) = Y(s))



Fig. 4. Responsef the idealizedsuspensiorsystemto an input unit stepwith threesetsof initial conditions:(a) initial rest;
(b) initial positiony(0~) = 1, zeroinitial velocity y(0~) = 0; and(c) initial position y(0~) = 1 andinitial velocity y(07) =

—b/m. The last setof initial conditionsresultsin immediateconvergenceo final value.

Solving for the outputY'(s) gives

(bs + k)
ms2 +bs+k

—bx(07) + (ms +b)y(07) + my(07)

Y
(5) ms2 +bs+k

X(s)+

Using this solution,we can properly find the systemresponsdo arbitraryinputs andinitial conditions.

We now assumethat the input takesthe form of a unit step z(¢) = w(¢), which hasa pre-initial
valuez(0~) = 0. The transformis X (s) = 1/s. The solution underthis unit stepis then calculatedfor
threesetsof initial conditions.The first setof initial conditions(a) are zero (initial rest):y(0~) = 0 and
9(07) = 0. The resultingoutput transformis

bs + k
s(ms? +bs+ k)’

Y(s) =

Inverting this resultyields the zero-statestepresponseshownin Figure4(a). Note thatin this system for
a stepinput, the positionis continuousacrosst = 0, andthe velocity takesa stepwith valueb/m m/sec.
This is true independenbf initial conditionsandthus appliesto the threecasesstudiedhere.

The secondsetof initial conditions(b) areinitial positiony(0~) = 1, zeroinitial velocity y(0~) = 0.
That is, the systemposition startsat the level which it will settleto in steady-stateln this case,the

outputtransformexpressioris

ms® + 2bs + k
Vi(s) —
() s(ms? +bs + k)’
or
1 b
Y(S)_g+m82+bs+k'
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Inverting this expressiongives the time responseshownin Figure 4(b). The observedmotion results
from the force impulsebd(t) which the damperappliesto the massat the momentof the step.Applying
the initial value theoremto Y (s) and sY'(s), respectivelyyields the post-initial valuesy(0+) = 1,
andy(0") = b/m. The post-initial velocity is simply an expressiorof the changein momentuminduced
in the massby the force impulseappliedfrom the damper;this changein momentumoccursin all three
casesstudiedhere.

The third setof initial conditionsis selectedo yield immediateconvergencedo the final value of the
responseThat is, we choosethe initial positionasy(0~) = 1, and setthe initial velocity to ¢(0~) =
—b/m, suchthatthe initial velocity will be exactly canceledby the force impulsefrom the damper.For
theseinitial conditions,the outputtransformis

ms? + bs + k 1
Y = = —,
() s(ms2+bs+k) s

We recognizethis asthe transformof the unit step,which gives

This waveformis shownin Figure 4(c), alongwith a pre-initial velocity of —b/m, shownby the straight
line segmentof positionfor ¢ < 0. Of course,in the analysiswe do not concernourselveswith exactly
how this pre-initial velocity is establishednor any detailsof the time variationprior to the transient.The

only requiredprior knowledgeis the velocity and positionimmediatelybeforethe transient(t = 07).

II. SIGNAL EXAMPLES

While the Laplacetransformis frequently associatedvith the solution of differential equationsthe
needto clearly distinguish0™ and 0~ is independenbf any dynamicsystemscontext.In the following
example,adaptedfrom Problem11.17in Siebert[4], we apply the unilateraltransformto threesignals
and their derivatives.This clarifies that the needfor usingthe £_ form (2), (3), (4), and (5) is really
a matter of properly defining signalsand their transforms,and is not fundamentallyconnectedto the
solution of differential equations.

Considerthe threesignals f(¢), g(t), and h(t) asshownin Figure5,



which are plotted for the value a = 1. All threefunctionsare nonsingularand agreefor positive time,
thereforethey all have the same Laplace transform. However, their derivativesdiffer for ¢ < 0. In
particularthederivativesncludediffering amountof animpulseatt = 0, andthusthe Laplacetransforms
of their derivativesmust differ. Our choice of Laplacetransformpropertiesshould give consistentand
correct results when operatingon these signals and their derivatives. The associatedransformsare
calculatedbelow to show that this is the case.We also demonstratehe consistentuse of the initial

value theoremin the contextof thesesignals.

A. Function f(t) = e~

Considerthe function f(t) = e~ with associategbre-initial value f(0~) = 1. The Laplacetransform
of f(t)is

1
L{e %} = —.
{e™} s+a
The time derivativeof f(t) is
f'(t) = —ae™ ™,
andthe Laplacetransformof the time derivativeis
L{—ae )y = —& 7
{mae '} = ™
Using the derivativerule
S —a
F - ) = — 1 =
sF(s) = f(07) s+a s+a

produceshe sameresult. The resultsfrom the initial-value theoremare

Yy 1 S
f(O )_sggolls—l—a_l’

and

—Sa

rin+\ . 1:
f(O )_sgg-ls—i—a

= —a.

Thereis consistencybetweenthe time domainand Laplacedomaincalculationof the signalsand their

initial value.



B. Functiong(t) = e~ %u(t)
The function g(t) = e~ **u(t) hasan associategbre-initial value g(0~) = 0. The Laplacetransformof

g(t) is the sameasfor f(t)
1

s+a

L{e "u(t)} =
However,the time derivative now includesan impulse
g (t) = 6(t) — ae” " u(t).

The Laplacetransformof this time derivativeis
a S
L{gdt)}=1- =
g ()} s+a s+a

which is different from the resultabove(7). Using the correctderivativerule

_ S s
$G(5) = 9(0 ):s—i-a_O:s—i-a

we get a consistentesult. The initial-value theoremgives

+\ — li
g(o ) sjg-ls—l—a

=1

producingthe correctvalueatt = 0. We canalsoapply the moregeneralinitial valuetheorem(5) to the
transformof the derivative as follows (seethe discussionin the appendixfor more details). Expanding

out the nonsingulampart of the transformgives

And thus,

which is the correctvalue.

C. Functionh(t) = e~ %u(t) — u(—t)
Finally considerthe function

-1 t<0 .
h(t) = =e “u(t) — u(-t),
e t>0
which hasan associategre-initial value h(0~) = —1. The Laplacetransformof this signalis the same
asfor the othertwo (H(s) = G(s) = F\(s)), andsowe don't list it here.Computingthe time derivative
gives

R (t) = 26(t) — ae”ul(t).
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The Laplacetransformof this time derivativeis

a 25+ a
L{W(t)} =2~ = :
s s+ta s+a
Using the correctderivativerule
2
sH(s)—h(0) = —°— y1=22%¢
s+ a s+a

gives a consistentresult. Finally, the initial value theoremgives a correct result for both » and its
derivative,h(07) = 1 and //(01) = —a, althoughwe don’t showthe detailshere.
In conclusionthe formulas(2), (3), (4), and(5) give correctresults.We hopethatthe signalexamples

presentedhbovehelp to clarify the applicationof theseformulas.

1. THE HORROROFOT

Severalversionsof the Laplacetransformare often found in the literature,which differ in the lower

limit of integration.Somebooksquotethe Laplaceintegral as

Loy = | T ft)e st at ®)

which createsan ambiguity with respectto signularitiesat the origin.

Otherbookssolve the ambiguity at the origin by specifyingthe 0™ versionof the transform

L0} = [ et ©

To differentiatebetweenthis form andthe preferedform

L0} = [T rwear

theseforms of the transformare often referredto as£_ and £ [5].
Usingthe £ form of the Laplacetransformrendersthe waveformsin Sectionll andtheir derivatives

indistinguishableA consistensetof Laplace-transfornpropertiescanbe constructedusing £, namely,

L{f) = [ swerar

0+
LiAf(t)} = sF(s) — f(07)

and

lim sF(s) = f(07).

§—00

10



Note that 0 appearsas 0" in all of the above equations.There is a symmetric, perhapsattractive,
consistencyin this appearanceHowever, this form of the Laplacetransformproducesunuseful,trivial

answergo many engineeringoroblems.Most embarrassinglynote that

Lo{5()} = : S(t)e " dt = 0

which shouldstrike the readeras utter nonsenseat leastfor practicalapplications.

IV. CONCLUSION

For a consistensetof propertiesfor the unilateralLaplacetransformthat are usefulto engineersuse

the definition

£y = [ fwea
the derivativerule

L{f' ()} = sF(s) — f(07),

andthe initial-value theorem
lim sF(s) = f(07).

S§— 00
Thesepropertiesgive studentsgeneraltools that can be usedto solve differential equationswith both
non-zeroinitial conditionsand inputs. Thesealso work properly in the presenceof input singularities.

Other presentation®f the unilateraltransformare not acceptable.
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Fig. 5. Threefunctions f(t) = e~ %, g(t) = e~ “‘u(t), h(t) = e~ *u(t) — u(—t), plottedfor a = 1, and their derivatives,

definedfor all time. Thesewaveformsare usedfor illuminating transformproperties.
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APPENDICES

Many treatmentsof the unilateral Laplacetransformin the textbook literature are self-contradictory.
Theseinconsistenciesrisefrom a reluctanceto usethe generalizedderivative; a consistentand easily
understoodtreatmentcan be basedon a uniform use of the generalizedderivative. In the following
appendicesye provide a reasonablanathematicalfoundationfor the use of generalizedfunctionsin
associatiorwith dynamicsystemsand,in particular,in the contextof the Laplacetransform.The book

by Hoskins[1] givesfurther perspectiveon the issuespresentedelow.

APPENDIXI

GENERALIZED FUNCTIONS

Discontinuoussignalsarea part of life. Generalizedunctionsarisein any consistentreatmenif their

derivatives.Onerequiremenis a uniform descriptionof the Laplacetransformof the derivative.

In manytextbooksdealingwith the one-sided_aplacetransform,“restinitial conditions”aretakenas
a standardcase.At the leasttheseconditionsinclude f(0~) = 0, so any signal f(¢) with f(0%) # 0
presentsus with a discontinuityat ¢ = 0. This assumptions overly restrictive,as we should expecta
consistentset of Laplacedefinitionsto admit non-zeropre-initial conditionson statesand signals.The

restinitial conditionis just a specialcase.

Most elementarytextbooks bothin mathematicandin engineeringattemptto minimizethediscussion
of singularityfunctionsby giving anyt = 0 discontinuityspecialtreatment Along the way, they disguise
the fact that thereis a discontinuityat zero at all, and this exacerbateshe confusionof functionssuch
as 1 andthe unit stepfunction (which havethe sameLaplacetransformand the samevalue f(0") but

which havederivativeswith different Laplacetransforms).

Thetreatmenbf generalizedunctionspresentedbelowis justa small partof the standardnathematical
theory of distributions,but what we presentis both sufficiently concreteto be quickly understoodand
sufficiently generalto be widely useful. We will describethe behaviorof singularity functionsin a way
which we hopesupportghe commonintuition aboutthem.Becausef our focuson the one-sided_aplace
transform,we will only considergeneralizedunctionson the interval [0, c0), and we incorporateinto

the information carriedby a generalizedunction the valuesat 0~ of the function andall its derivatives.
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APPENDIXII

DEFINITION OF GENERALIZED FUNCTIONS

A function f(¢) on [0, 00) is piecewisecontinuousif thereis a sparseset.S C [0, 00) suchthat f(t)
is continuouson the complementf S, andfor everya € [0, 00) the limits f(a+) and f(a—) exist. (A
set S of numbersis sparseif no interval of finite width containsinfinitely many of its elements.)

This last clauserequiresspecialinterpretationin casea = 0. In this casewe are still demandingthe
valueof f(0—), but this is now additionalinformation, not determinedby the valuesof the function on
[0, 00). This might be calleda “pre-initial condition,” in contrastwith f(0+) which is “post-initial.”

A function f(¢) onaninterval [0, co) is piecewisesmoothif thereis a sparseset.S C [0, co) suchthat
all derivativesof f(¢) existon the complemenbf S, and arethemselvegpiecewisecontinuousfunctions
on [0, co).

Thus part of the dataof a piecewisesmoothfunction on [0, cc) is the sequencef values f™ (0—),
n =0,1,2.... This datais not implied by valuesof f(t) for ¢t > 0.

In this setting,the Heavisideunit stepfunction(t) is definedto takeon the value 1 for all t > 0 and
have zero pre-initial conditions, (™) (0—) =0 for all n > 0. We leavethe readerto choosea value for
u(0); the value of a generalizedunction at any single point is not significant,as explainedbelow.

A singularity functionis a formal sumof the form
Fs) =3x8t — a)
k,l

wheres() is the " derivativeof the unit impulse.Herea,, is anincreasingsequenceén [0, o). For each
value of k, only finitely many of the ¢;,; are allowedto be nonzero.The sum can be over a finite or
infinite rangeof valuesof k. If it is infinite, we requirethat klirgo ap = oo.

The a;, for which somec;,; is nonzeroare the “singular points” of f(t). The “singularity at ¢t = a”
of fs(t) is the part of this sumhavinga;, = a. If this sumis empty, f;(¢) is saidto be “nonsingularat
t=a.

We also commenthere that the unit step function u(t) = §(-1(¢) is taken as unitless. Succeeding
derivativesintroduceincreasingnegativepowersof time. The units of the singularityfunctionss”) (¢) are
thussec— (1) If we wish to usethesefunctionsin associatiorwith physicalquantities thenthe functions
must be multiplied by weighting terms with appropriateunits. For example,in a voltage waveform,
the functions §()(¢) must be multiplied by weighting terms ¢, ; which have units of Volt-sec*1). As

anotherexample,a force impulse Fy6(t) hasa weightingterm £y with units of N-sec.The term Fj then

14



correspondgo the areaunder a finite-durationforce event, such as a hammerblow, which we might
modelwith animpulsefunction.

A generalizedfunctionis a formal expression

f(t) = fr(t) + fs(t)

whose“regularpart” f,(t) is determinedby a piecewisesmoothfunctionandwhose"singular part” f,(t)
is a singularity function. The regularpart contributesthe data (™ (0—) = £ (0-).

Thereis a subletyhere.Two piecewisesmoothfunctionsdeterminethe samegeneralizedunctionsif
(andonly if) they differ from eachotheron a sparseset. This is why the value of the Heavisidefunction
att = 0 is irrelevant.This caveatis necessaryn orderfor the usualuniquenessheoremfor solutionsof
differential equationgo hold for generalizedunctions.

Generalizedfunctions can be differentiatedto give other generalizedfunctions. The “generalized
derivative” of a piecewisesmoothfunction f,.(¢) is given by the ordinaryderivativeof f,.(¢) atits smooth
points, along with the specificationthat (/)™ (0—) = fﬁ”H)(O—), plus the sum of delta functions of

the form
(f(a+) — fla=))d(t —a)

for eachpoint a at which f(¢) is discontinuousThe derivative of a singularity function simply follows
the notationd’®) = §U+1),

Generalizedunctionscannotgenerallybe multiplied together,and suchgeneralproductsneveroccur
in applicationsof the Laplacetransform.However,if f(¢) is a smoothfunctionthenits productwith any

generalizedunction ¢(t) is defined,andthe “product rule”

(f-9)'(t) = f'(t)g(t) + f()g'(t)

holdsin this generality.Indeed,this rule is usedto derivethe definition of the product.We startwith the

relation
f@)o(t —a) = f(a)d(t — a). (10)

We can usethis and the productrule to expressall other productsof the form f ()6 (t — a), where
f(t) is a smoothfunction, as linear combinationsof §"~*)(t — a)’s with constantcoefficents.To see

this, differentiate(10) and apply this sameidentity with f’(¢) replacingf(¢) to find

f()d'(t — a) = f(a)d'(t — a) — f'(a)(t - a).
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Continuingin the sameway leadsby inductionto the identity

n

F00 6~ a)= 31 | ™| 190 80— a)

k=0 k
This formula specifieshow a generalizedunction is to be multiplied by a smoothfunction f(¢). It also
explainsexactly how smooth f(t) hasto be beforethe product f(¢)6 (t — a) makessenseit andits
derivativesup to f(™(t) shouldexistatt = a andbe continuousthere. This resultalsoappearsn Hoskins
[1] asequation3.26.
The productrule canbe integratedto get the usualintegrationby partsformula, valid for any smooth

function f(¢) andany generalizedunction g(t):
b+ bt

- [ rwewa

a— a

b+

g @) dt = f(t)g(t)

a

If we apply this to the casea = 0, we will usethe valuesf(0—) and g(0—) which comeas part of the
definition of thesefunctions.Partof the definition of being smooth(asopposedo piecewisesmooth)is

that f(0—) = f(0), so:
b+ b+
| F0g 0 dt = (10)g0+) = F0)90-) — [ F (e ar
APPENDIXIII
EQUATION (3), THE DERIVATIVE RULE

An importantfeatureof generalizedfunctionsis that (assumingappropriategrowth conditions)one

candefinetheir Laplacetransforms.The basicsingularity functions satisfy
L{6M @)} = s

It's easyto checkthat the differentiationrule is compatiblewith this.

The derivativerule (3)
L{f'(t)} = sF(s) — f(07).

can be directly derivedfrom the definition (2) throughintegrationby parts:

Ly = [ e,

/udvzuv—/vdu

u=e dv = f'(t) dt
du = —se stdt  v=f(t)

Integratingby parts



resultsin
/fo e SHF(t) dt
= e_Stf(t)Ko + s /Cjo e Stf(t)dt
= f(07) 4+ sL{f()}

Provided one systematicallyusesthe generalizedderivative, this formula is valid for any generalized

function f(t) provideds hasreal part large enoughfor the improperintegralsto converge.

APPENDIXIV

EQUATION (4), THE INITIAL -VALUE THEOREM

The initial-value theoremis

lim sF(s) = f(0%).

s—o0-1
Actually, it is more accurateto call this the post-initial-valuetheorem,sinceit yields the resultat 0+,
but we will staywith standarderminologyandreferto it asthe initial valuetheorem.This resultcanbe
derivedvia severalapproachesvhich provide alternateinsights.We showthreeapproachedelow, which
are basedupon a) a formal applicationof the derivativerule, b) a qualitativeargumentirom the sifting

propertyof se~*! in the limit, andc) the initial singularity theorem.

A. From the Derivative Rule

The initial-value theorem(4) canbe derivedfrom the derivativerule (3). If

L{f(t)} = sF(s) = f(07)
then

sF(s)= [ f(t)etdt+ F(07).

0-

Taking the limit as s goesto infinity alongthe real axis gives

s—o00-1 s—o00-1

- 53231( edt+/ It _Stdt>+f( )

0) +f(07) = f(07)

lim sF( )= lim ( OOO f'(t)e st dt) + f(07)

= lim
s—o0-1

which is the expectedresult.
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Fig. 6. Sifting property of se™**: As s grows toward large positive real values,se™** approaches delta function on the

positive side of the origin.

B. From the Sifting Property

The initial-value theoremcanalso be heuristicallyargued,as suggestedby Kailath [8], by multiplying

the definition by s
sF(s) = f(t) se st dt
0-

andtaking the limit alongthe real axis

lim sF(s)= lim f(t) se st dt.

s—00-1 s—oo-1 Jo-
As suggestedy the plot in Figure 6, ass growslarger,the function se=** sifts for valuesf(0"), which
we indicatevia the notation

lim se %" — §(t — 0T).

s—00-1
Therefore

o0

lim sF(s) = f&)o(t—0")dt = f(07)

S§—00 0—

asexpected.

C. From the Initial Singularity Formula

The initial-value theoremcan perhapsbestbe thoughtof asa specialcaseof what we term the Initial

Singularity Theorem,which assertghat F'(s) is asymptotic,as s increaseghroughreal numbers;to a
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polynomialwhich carriespreciselythe informationaboutthe singularityof f(¢) att = 0. To expresshis

we will usethe notation F'(s) ~ G(s) to mean

lim (F(s) —G(s)) =0.

s—o00-1

The initial singularity formula assertghat if

> as(t)
l

is the singularityof f(¢) att =0, and F(s) = L{f(¢)}, then
F(s) ~ Z ast.
I
This comesout of the value £{5() ()} = s™ togetherwith the two facts

lim £{f;(1)} =0,

and
limlﬁ{é(”)(t —a)}=0 for a>0.
The Initial Value Theoremarisesby applyingthe Initial Singularity Theoremto f’(¢). The singularity
of f/(t) att=0s
(f(0+) = £0=)8(t) + D s (1),
!
with Laplacetransform

(f(0+) = f(0=)) +D_as™t,
so the ¢-derivativerule (3) implies |
sF(s) = f(0=) = L{f ()} ~ (F(0+) = f(0=)) + D as'™.
Cancelingthe f(0—)'s, |
sF(s) ~ f(0+) + > s
In particular,if f(t) is nonsingularat t = 0, then |

lim sF(s) = f(0+).

s—o00-1
More generally,with the above analysis,we can seethat the value f(0+) exists evenif thereis a
singularityat ¢ = 0, asalsonotedby Kailath [8]. Thatis, if F(s) is a polynomialplus a function F(s)

convergingto zeroass — oo - 1 then

lim sF(s) = f(0+).

s—o00-1
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For example,considerthe first-ordertransform

s+ a a—2>b
F(s) = —1 .
)=S0

This hasa post-initial value f(0") = a — b, eventhough f(¢) includesan impulseat ¢t = 0, as canbe

seenusing our resultabove,or via direct inversionof the transform.

APPENDIXV

INVERSE

Many booksquotethe inverseLaplacetransform
LYF(s)} = —— / T st p(s) ds.
215 Jo—joo
However,this resultis primarily of theoreticalinterest,andwe havenot found usefor it in undergraduate
teaching.The limited-order systemstypically studiedwith Laplace techniquesare readily solved via
partial fraction expansionand inversionvia tables.As well, this formula requiresthe use of complex
integration,which is not a requiredcomponenbf mostundergraduatengineeringcurricula. Thuswe do

not recommendnorethana brief mentionof this resultin undergraduatengineeringcourses.

APPENDIX VI

CONFUSIONIN THE TEXTBOOK LITERATURE

Thetextbookliteratureis surprisinglyrandomin its treatmenf the unilateralLaplacetransform;many
otherwise-excellentexts fumble this issue.As is clear from the abovediscussionswe regardthe £_
from asthe only suitableapproachfor the studyof dynamicsystemsThis form is properlyadoptedn a
numberof texts, for example thoseof Franklin, Powell,and Emami-Naeini[12], DeCarloandLin [13],
Kailath [8], and Siebert[4]. We havefound the discussiorin Siebert[4], Chapter2 and 11, particularly
helpful. Our examplewaveformsin sectionll are basedon Problem11.17in Siebert'stext.

Many authorsusethe £, version of the unilateral Laplacetransform.This unfortunatechoice can
likely betracedbackto the classic1942text by GardnerandBarnes[9]. Thetitle of this paper,“Troubles
at the Origin,” wasinspiredby section3-6 of Aseltine[10]. However,while this text correctlyidentifies
the problem, it reachesthe wrong conclusion!The £, versionof the transformalso seemspreferred
in mathematically-orientedreatmentssuch as the frequently-citedbook by Zemanian[2]. The control
systemsook by D’Azzo andHoupisadoptsthe £, transformin the definition of the derivativeproperty,

but is a bit unclearasto the lower limit on the Laplaceintegral.
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However,the £, form of the transformhasthe hugedisadvantag¢hat it leavestransientsat¢ = 0 as
essentiallyan exercisefor the reader,presumablyto be solvedby sometime-domaintechniquesuchas
impulse-matchingThe exampleproblemsin sectionl could not be efficiently solvedwith the £, form;
with this form the transformof the unit impulseis identically zero! This little “problem” is frequently
circumventedby defining the delta function as occurring completelyto the right of ¢ = 0. What then
does0+ meanto theseauthors,and what time value is associatedvith the initial value theorem?We
surely can’t teachour engineeringstudentsto study transientsvia the £, transform.We also owe it to
themnot to leavethis issuefuzzy by avoiding discussionof 0™ and0~.

Somebooks add to the confusionby showing both £, and £_ forms, with little or no comment
asto whento chosebetweenthem. This includesthe texts by Ogata[5] [6]. The book by Close and
Frederick[3] statesthat both forms areacceptableaslong asthe correspondingropertiesare developed
in a consistenfashion.However,this leadsto someconvolutedreasoningassociatedvith the transform
of the unit impulseandwith the derivativeproperty.

Furthermoretextbooksthat simply claim £{f'(t)} = sF(s) — f(0) or lims_,o sF'(s) = f(0) without
further clarification mustbe consideredsuspecievenotherwisefine mathbookssuchas Churchill [11]).
The systemsbook by Palm [7] statesthat using the one-sidedtransformis the sameas assumingthat
signalsare zerofor ¢ < 0, which is not true.

In summary,while the booksreferencedabovehave muchto recommendhem, the issueof Laplace
techniguegrequiresclarificationin many of thesereferencesandin our teachingof systemsWe hope

that the discussionin this paperwill be helpful towardthat end.
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