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Professor Sanjay Sarma 

October 21, 2007 

1.0 Where are we in the course? 

During the class of September 19th (about a month ago) I finished our coverage of kine-
matics of frames, systems of particles, and to a large extent, rigid bodies. We developed 
three key concepts. Do you remember what they were? 

1. The concept of frames of reference, and derivatives with respect to frames. This is the 
key concept. The concepts below can be derived from this first statement, and are sim-
ply matters of convenience. 

2. The magic formula for simplifying the taking of derivatives: 
A Bdr dr A B= + ω × r .
dt dt 

3. The super-ultra magic formula which you can use when there is a particle moving with 
respect to a frame of reference which is itself moving: 

A S  A P B S A B  PS A B  A B  PS A B B S  a = a + a + α × r + ω × ( ω × r ) + 2 ω × V . 

During the subsequent three lectures, I covered kinetics of a single particle (momentum, 
Newton’s laws, work-energy principle, angular momentum) and collisions. 

At that time, in terms of a roadmap of the course, we were as shown below. We said we 
would start examining the kinetics and the constitutive relationships of systems of parti-
cles and proceed to rigid bodies. 

System Kinematics Kinetics & Constitutive 
Particle 
System of particles 
Rigid Bodies 
Lagrangian formulation 
Oscillations 

1.1 The Dumbbell Problem: Why Did we Do It? 

During the lecture on the 10th of October, I analyzed the equations of motion of a dumb-
bell. Why did I do it? There were two reasons: 

1. First, notice that I solved the dumbbell problem using nothing more than the kinematics 
that we had just derived, and Newton’s Laws. The primary point I was making was that 
we actually have all the basic machinery to solve complex problems with multiple par-
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ticles, like the dumbbell. It might be tedious, but it is there. Now we seek ways to sim-
plify the analysis. 

2. We solved the dumbbell problem the hard way: by formulating the equations of motion 
for the particles individually. Each particle was treated as if it had two degrees of free-
dom in 2D. We modeled the constraint that the particles couldn’t move with respect to 
each other, and we explicitly put down the internal forces, which we also cancelled.1 

How do we simplify the analysis? 

Well, when we did the analysis, this is 

what we found that the equations of 

motion boiled down to:


A CFP + FQ = m a (EQ 1) 

and 

CQ	 A B  r × (FP – FQ) = (2ml2) α 

.  (EQ 2) 


In other words, for this rigid body: 

•	 the total force equals mass times 

centroidal acceleration; 


and 

•	 the total torque equals a new term called the moment of inertia multiplied by 
angular acceleration. 

That’s a total of 3 equations. 

2.0 The Dynamics of Rigid Bodies 

This is a fantastic discovery if we can generalize it. The consequences: 

•	 In 2D, a rigid body has 3 degrees of freedom—two translation and one rotation. Guess 
what, the vector equations of the form above would give us 3 scalar equations—just 
what we need. 

•	 In 3D, a rigid body has 6 degrees of freedom—three translation and three rotation. 
Guess what, vector equations of the type above would give us 6 scalar equations—just 
what we need. 

Here’s the great part: we can indeed generalize Equations 1 and 2. Let’s recap where we 
ended up for rigid bodies. First, though, a small digression on force-torque equivalence. 

1. When I was in college, I had a friend who misread the term “internal forces” and thought they were called 
“infernal forces.” I thought it was a very apt Freudian slip. 
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2.1 Equivalence of Force-Torque Systems 

A key principle in rigid-body dynamics, which everyone takes for granted is the principle 
of equivalence of different force-torque systems. The principles of equivalence are sum-
marized below. 
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A force can move along its line of 
action and be completely equivalent 

Two equal and opposite forces as 
shown create a pure moment, also 
called a couple. A couple can be 
moved around and be completely 
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Combining the two: any system 
of forces can be replaced by the 
total force, applied through C, 
and the total torque about C, 
applied as a pure moment.

 equivalent as far as its effect. 

indeed, any 
point. 

a)A force through a point can be replaced with the same force through any other point 
which is in the same line and have the exact same effect on the rigid body. 

b)A perfect couple of forces (i.e., equal and opposite forces separated by some perpendic-
ular distance) can be moved to any point on the rigid body and still have the same 
effect. This is called a pure moment or a couple. 

c)Any system of forces can be replaced by an equivalent system of forces where: 

• There is one force, equal to the total of all the forces, through the center of mass; 

• And one pure moment, equal to the torque of all the forces about the center of mass. 

• In fact you can do this with any point, not just the center of mass. 

This cool principle reduces any complex set of forces on a rigid body to a canonical form 
consisting of one force (a vector in 2D) and a torque (effectively a scalar in 2D). OK, with 
that done, we now examine the equations of motion. 
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2.2 Equations for a Rigid Ensemble of Particles 

The acceleration of the center of mass of a rigid body is related to the sum of forces in a 
very intuitive way: 

FE = 
A d mAv 

CE = mAa 
CE (EQ 3) 

dt 

where FE  is the total force on the rigid body E and all the other terms are obvious by con-
text. A, of course, is the inertial frame of reference. This gives us two equations in 2D (3 
in 3D). 

Furthermore, the torque about a point Q is related to angular momentum by: 

TE Q⁄ A 

d
d 
t
A E Q⁄ A Q  A E  

(EQ 4) = H + v × P

⁄where TE Q  is the total torque of all the forces acting on rigid body E about the point Q; 
A E Q A EH ⁄  is the angular momentum of the rigid body E calculated about point Q and P . 
That gives one more equation (3 more equations in 3D). For a free moving rigid body, 
therefore, we will get three differential equations for the three unknowns in 2D (and six 
equations for the six unknowns in 3D). Summary: 

TABLE 1. Equations and unknowns in rigid body dynamics. 

Unknowns (dof) Equations from Equations from 
Dimensions related to motion translation kinetics rotation kinetics 
2D 3 

(2 translation + 1 rotation) 
2 from Equation 3: 

FE m a 
A E  = 

1 
(from Equation 4) 

3D 6 
3 translation + 3 rotation 

3 from Equation 3: 

FE m a 
A E  = 

3 
(from equivalent of 

Equation 4) 

This is all well and good, Sanjay, you might say. But how do we calculate the right-hand-
side of Equation 4? Besides, what about that last term in Equation 4. Doesn’t it stick out 
like a sore thumb? Indeed it does. Let’s figure out how we get rid of it and put the equation 
to work. 

⁄
2.3 Simplifying 

A d A E Q A Q  A EH + v × P
dt 

In class we took this opaque equation and tried to simplify it. First, we assume that Q We 
used kinematics to expand: 
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n n 
A E  ⁄ Q A i  ⁄ Q Qi A iH = ∑ h = ∑ r × m v (EQ 5) 

i = 1 i = 1 

by breaking up the position vector rQi as rQC + r 
Ci where C is the center of mass of the 

ensemble. We then computed the derivative of this expression and inserted back into the 
RHS of Equation 4 to arrived at the following after a great deal of calisthenics: 

A ⎛ n ⎞ 
TE Q A d OC A C  QC Ci ⎟ IE Q A E  A E⁄ =

dt
(r × p ) + 

d
d 
t 
⎜
⎜ ∑ mir

A B  
⎟

⁄ A Q× [ ω × r ] + α + v × P . (EQ 6)  
⎝ i = 1 ⎠ 

TE Q IE Q A EMessy, huh? Who would have thought that the equation for ⁄  isn’t simply ⁄ α . 
There are some very specific conditions under which the mess in Equation 6 simplifies. 
The simplifications are below. 

2.3.1 Simplification #1: About the Center of Mass 

If the point Q is actually the center of mass then: 

TE C IE C A E⁄ = ⁄ α .  (EQ 7)

Simple, elegant, and always correct. When in doubt, always use this equation about the 
center of mass. Taking torques about the center of mass is always valid. The downside is 
that certain pesky external contact forces will show up as torques; this is slightly annoying 
but merely an algebraic nuisance, not a real problem. 

2.3.2 Simplification #2: About the Instantaneous Center of Rotation 

The instantaneous center of rotation (ICR) of a rigid body is specifically a point on the 
rigid body which is instantaneously at rest with respect to an (the) inertial frame. If the 
point Q is actually the (ICR) for the rigid body, then: 

⁄ IE ICR) A ETE ICR( ) = ⁄ ( α .  (EQ 8)

Also simple and elegant. The instantaneous center of rotation is often a hinge or, in roll-
ing, the point of contact. Contact forces usually pass through this point, and so taking 
moments about this point is convenient because a lot of irrelevant forces will vanish. The 
downside is that the ICR might not always be a nice convenient point. 

2.3.3 Simplification #3: My Grandmother Lives in Quito 

If, for sentimental or technical reasons, you must take moments about some point Q which 
is neither he center of mass nor the ICR, then the formula is: 
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TE Q E CE A E  QCE A C⁄	 = I
⁄

α + mr × a .  (EQ 9)

This general formula is useful when you feel that taking moments about this particular Q 
is advantageous because several unknown forces are eliminated from the equation, 
thereby simplifying your algebra. 

Here are two cool observations. 

•	 When Q is the center of mass, Equation 9 reduces seamlessly to Equation 7. Why? 

Because r
QCE = 0 in that case. 

•	 When Q is the ICR, Equation 9 reduces seamlessly to Equation 8. Why? Because in 
A C  A C  QCEthat case, a = α × r  and the second term becomes a restatement of the parallel 

axis theorem! 

3.0 Energy: The Easy Free Equation 

You saw for a single particle that you can always derive one free equation by invoking the 
work energy principle for rigid bodies. This is not extra — if you derive all possible equa-
tions from Newton’s Laws, the energy equation is simply a restatement and will not add 
information. However, it is a freebie for the lazy amongst us. Lazy is fine in dynamics — 
a lot of what we have developed is convenience for efficiency. Everything could be done 
ab initio from Newton’s Laws, after all, and we are deriving everything else just so that we 
can be more productive with our time. 

The form of the work-energy relationship is simply: the work done by external forces 
equals the sum of the increases in kinetic energy and the potential energy. 

3.1  Work Done by External Forces 

The work done by a force F through the center of mass of a rigid body and a moment 
(torque) T about that rigid body is given by: 

2 2 

W1 → 2 = ∫F • dr + ∫T • dθ	 (EQ 10) 

1 1 

where dr  is the motion of the center of mass and dθ is the rotation of the rigid body (the 
infinitesimal rotation is a vector with a direction described by the screw rule.) W1 → 2 is 
the work done in a path traversed by a rigid body in from Point 1 to a Point 2. 

•	 A force that is not through the center of mass will do work similarly, but the dr would 
be of that point. If there are many forces, the work contributions of all can be added up. 
Rigid Body Dynamics	 October 21, 2007 

y Sarma, Nicholas Makris, Yahya Modarres-Sadeghi, and Peter So, course materials for 2.003J/1.053J

ontrol I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. 


Downloaded on [DD Month YYYY].


6 



Cite as: Sanja
Dynamics and 
•	 The sum can be shown to be equivalent to work done by the total force through the cen-
ter of mass and the work done by a pure moment. In other words, our equivalence 
reduction holds here. 

3.2 Potential Energy 

The potential energy of a rigid body depends on situation. If there are springs, then the 
springs can store energy. Under gravity, the formula is simple: 

V2 – V1 = mg(r 
1 → 2 • avertical)	 (EQ 11) 

where r 
1 → 2 is the vector from the beginning to the end of the path traversed by the center 

of mass of the rigid body, and where avertical is a unit vector pointing upwards! 

3.3 Kinetic Energy 

3.3.1 Kinetic Energy About the Center of Mass 

We already know how to calculate the energy of a particle in translation. The kinetic 
energy of a rigid body has two contributions: one from translation and one from rotation. 
The translation term has a pleasing similarity to the energy of a particle. In fact it is equiv-
alent to the energy of a single particle, located at the center of mass of the rigid body, and 
having the same mass as the rigid body: 

Ttranslation = ---1 mE(Av
CE ) 

2	
(EQ 12)2 

where A is an inertial frame of reference. The kinetic energy from rotation has a similar 
form (isn’t that great?): 

Trotation 
1 
2 
---I

E CE⁄
= .ωA E  2( ) (EQ 13) 

The total energy is: 

T 1 
2 
---m E v A CE 2 

( ) 1 
2 
---I 

E CE⁄ 
+= .ωA E  2( ) (EQ 14) 

Energy formulations have no pesky terms, no complications. The kinetic energy is the 
total energy stored in motion. That’s it. 
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3.3.2 Kinetic Energy about the ICR 

You can also calculate the total kinetic energy of a rigid body about the instantaneous cen-
ter of rotation (ICR.) About the ICR, you don’t need to account for the translational and 
rotational kinetic energies separately. Instead, the total kinetic energy is simply: 

1 E ICR  A E 2
T	 = ---

2I ⁄ ( ω ) . (EQ 15) 

3.4 The Work-Energy Principle 

The total energy of a system, U, is T V where T and V+ are defined in the equations 
above. The work-energy principle simply relates the work done from state 1 to state 2 with 
the change in energy: 

W1 → 2 = U2 – U1 = (V2 + T2) – (V1 + T1) ,	 (EQ 16) 

assuming that energy is not “leaked” anywhere. 

4.0 Power 

The power is simply the rate at which work is done on a system by a set of forces and is 
given by: 

A CE ⁄ E A EFE • v + T
E C

• ω .	 (EQ 17) 

The outcome is an equivalent rate of increase of the energy of the system, and is given by: 

d + ] .	 (EQ 18)[T V
dt 

Again, if the system is conservative, and not energy is lost, then the two terms are equal. 

5.0 How to Lay Out the Equations of Motion 

There are two basic steps to writing the equations of motion: 

1. Draw a Free Body Diagram (FBD). 

•	 Draw the object and all the forces on the object, showing there the act, along with the 
given dimensions. 

•	 Draw the inertial frame of reference, and all necessary intermediate frames of refer-
ence. 

•	 Label all the coordinates on the system: the unknown θ’s, the l’s and so on. 

•	 Pick a point about which you will take moments. Pick wisely depending on whether 
this point will simplify the problem or not. You will never go wrong if you pick the 
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center of mass. But you might go long. However, when in doubt, this is the best 
option. 

2. Write down the equations of motion. Count the unknowns and Equations: you should 
be all squared away. 

•	 Write out any kinematic and constitutive equations you have. Calculate the appropri-
ate moments of inertia. 

•	 Eliminate all the internal forces and superfluous coordinates, and come up with the 
number of equations you need for the number of dof’s you have in terms of the 
remaining coordinates. 

3. Oh, and solve the equations!! We will do that only a bit in this class. The bulk of the 
solving will occur in 2.004!! 
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