2.003/1.053 Dynamics and Controls I Spring 2007 Problem Set 7

Issued on Monday, April 9^{th} Due in lecture on Monday, April 16^{th}

1 Two carts

The two carts shown below roll on massless wheels on a horizontal surface. Derive the equations of motion for this system using Lagrange's equations. Use x_1 and x_2 as generalized coordinates describing the position of masses m_1 and m_2 respectively, measured from the static equilibrium configuration in the absence of forces F_1 and F_2 .

Put your equations of motion in the following matrix form:

$$\mathbf{M} \left\{ \ddot{x}_1 \\ \ddot{x}_2 \right\} + \mathbf{C} \left\{ \dot{x}_1 \\ \dot{x}_2 \right\} + \mathbf{K} \left\{ \begin{matrix} x_1 \\ x_2 \end{matrix} \right\} = \mathbf{F}$$

where M, C and K are 2×2 matrices and **F** is a 2×1 vector.

Cite as: Thomas Peacock, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

2 Centrifuge

A horizontal frictionless tube rotates about a vertical axis at a constant angular velocity Ω . Two particles, m_1 and m_2 , (connected by a spring), are placed inside the tube as shown. Derive equations of motion for this system. The unstretched length of the spring is l_0 .

3 Rigid body pendulum

A pendulum consists of a rod of length L, mass m, and centroidal moment of inertia $\frac{1}{12}mL^2$ with a frictionless pivot at one end. The pendulum is suspended from a flywheel of radius R and mass M which can rotate about the fixed point O, as shown below.

- i. Select a complete and independent set of generalized coordinates.
- **ii.** Derive the Lagrangian equations of motion without making any approximations (small angles, etc.).

