Example 2: Particle on String Pulled Through Hole 1

2.003J/1.053J Dynamics and Control I, Spring 2007
Professor Thomas Peacock
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Lecture 3

Dynamics of a Single Particle: Angular
Momentum

Example 2: Particle on String Pulled Through
Hole

Figure 1: Particle on string pulled through hole. Tabletop with hole B. A string
comes out with an attached mass. The particle is traveling around with an
angular velocity 6. Figure by MIT OCW.

Assume: Frictionless surface. Inextensible String.

Pull string through hole at B such that:

(to) = L %(to) =0
T‘(tl)—L/Q d—;(tl):o

If o(to) = 90, what is 9(151) = 91?
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Discussion

If we use linear momentum, will need to describe forces between m and string.
Thinking about angular momentum about the point B:

Tp = ﬁB +vp x my < Angular momentum principle
hp =r xmu = Angular Momentum

Now:

T =1 x F «— TForces acting on particlerg = 0 because r || F

B = EB +vp X my = Angular momentum about B is constant EB =0.

75 = 0 (from above)
vp = 0 because B is not moving
.. hp = Constant

In Cartesian Coordinates

r = rcosfi+ rsinfj

= mu = ms* = —mrf sin 07 + mré cos 0

S

Xp= Lme‘.olAf(lAf is unit vector in z-direction: out of page).

Setting (a) = (b): 6, = 46, and velocity of particle v; = 2vy = %49.0 = 2L6,.

Energy is not conserved: why? The pulling force (tension) does work.

Dynamics of systems of particles

Forces on each particle may be composed as follows
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B (arbitrary point)

X

Figure 2: Dynamics of systems of particles. Figure by MIT OCW.

F;: Resultant force acting on m;
Feet: External forces (e.g. gravity)
F™: Internal forces between particles (e.g. charge attraction)

n
F ﬁ"t = Z LjForce on particle i due to particle j
Jj=1

Newton’s Third Law

iij = _iji
Thus:
ZEZ:M - ZZL] =0
i=1 i=1 j=1
JFi

Sum of all internal forces is zero, therefore:

i Fiint =0
=1

Total internal torques is also zero: demonstrate by considering an arbitrary pair
of particles:
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B Fim

Figure 3: Arbitrary pair of particles subject to individual forces. Figure by MIT
OCW.

- 7% = 0 No net internal torque

Center of mass

r o= Z?:l m;r; Z?:l m;r;
XL M
M: Total Mass of System

Note that this relation can also be written as Y., m;(r; — r,) = 0 i.e. center
of mass is the point about which the total mass moment is zero.

Newton’s Laws for Systems of Particles

(Williams: C-1 to C-3.6)
Derivation needed to prevent mistakes in applying the laws later. Will be able
to use results for rigid bodies.
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Linear Momentum Principle (for a single particle)

d
F,==p
=i = b

F';: Total Force on particle i
p;: Linear momentum of particle i

n

ex S in d S d
DET ) t:@;&:aﬂ

=1 i=1

Eént =0

d
ext el
= T al

F°"*: Sum of F external for whole system.
Note that total linear momentum:

n n n

d mir;

p= Zpi = Zmivi = My, where v, =7, = az ]\}Z
i=1 i=1 i=1

If Y20 | F¢*t = F°*' = 0 = p =constant; therefore, v, =constant.

Example: You have a ball as a ice skater. Throw object, both ball and skater
move, but center of mass stays the same, does not move.

Angular Momentum Principle

From Newton II F;, = %pi

Torque:

Sum over all particles.

n

' / d
E x Fet — E X —p.
i=1 s S

=1

Later will need vectors to center of mass.

n
Z 757" = Sum of all external torques about B
i=1
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Figure 4: A system of particles subject to a force. Figure by MIT OCW.

i=1 i=1 i=1 i=1
n n n
d d
Yorit= Y hiy =Y —(ri—rp) xp
dt 4 dt
i=1 =1 =1
d n n
5= s =D vixp ) usxp,
i=1 =1

So, finally we have:
ext d
T = EEB +up X P
IeBIt; Total External Torque

%ﬂ g Total Angular Momentum
vp x p: Total Linear Momentum

Next time: Consequences of this expression and work-energy principle.
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