Systems of Particles 1

2.003J/1.053J Dynamics and Control I, Spring 2007
Professor Thomas Peacock
2/20/2007

Lecture 4

Systems of Particles: Angular Momentum and
Work Energy Principle

Systems of Particles

Angular Momentum (continued)

d
5t = EEB tug X P

75t Total External Torque
H : Total Angular Momentum
P: Total Linear Momentum

ext

From now on, 74" = 75.

If 75 =0 and vg = 0 or if B is the center of mass or if vg || v~ then Hp =
constant (Conservation of Angular Momentum).

You may be familiar with 75 = % H 5 (only valid if vz = 0 or vg || P).
Angular momentum H 5 of a collection of particles about point B is given by:

N
EB = ZﬁBz
i=1

!
where hg = r; X mu;.

If (Hg) is the sum of the angular momenta of the individual particles about
point B,
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Figure 1: Angular momentum about B for a system of particles. Each particle
has mass m; positions r; with respect to the origin and 7‘; with respect to B.
The center of mass C has positions r/c with respect to B and p; with respect to
each point mass m;. Figure by MIT OCW.
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where we have used E miv; = Mu,

Therefore, we write:

Hpy=Ho+r,xP

Notice that vp does not appear in this equation.

The angular momentum about B is the angular momentum about the center of
mass (C) plus the moment of the system linear momentum (Muv. = P) about B.

We will use these equations for rigid bodies. With rigid bodies will need to use
moments of inertia.
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Work Energy Principle

n To; n 2} d
WlQ_;/r Ei'd&_;/ﬁl s * /t Zdt{ “’QJ}C&
1= —17 1= =1

=T, -T

where:

Wi Z Wi2)i Z/ F; - dr,
i/ E" -dri+ Z /zzi E57 - dry
= i=1 Y1

=14

n Tgl int int
S R R dr, = Wi

i=

n Tgl ext ext
S [ ES - dr = Wi

pwint Z /t ity
Z / Z fij - vgdt

j=1

J#1

- [T g

=1 j>1

= [N g

1 =1 J>1

This is non-zero in general.
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Figure 2: Relative velocity probably has a component in the direction of Lj
The figure shows two random points with randomly chosen velocities. Unless
the difference between the velocities of the two points is zero or perpendicular
to the direction of force L,j, L,j - (v; —v;) will not be zero; there would be some

component in the direction of Lj Figure by MIT OCW.

No reason that difference between velocities should not have a component in
the direction of LJ

If particles are parts of a rigid body system, then there is no relative motion in
the direction of L,j (e.g.)

Figure 3: Two point masses connected by a rod. This is an example of a rigid
body where due to the rod, there is no relative motion of the two point masses
at each end when the rigid body moves. Figure by MIT OCW.

2(r; —1r;) - (v, —v;) =0

Internal forces Lj are along the direction (r; —r;).

Ji (v —v;) =0

1)

Therefore, for a rigid body system we have proved:
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f

_Z‘j'(yi_y') =0

J

Therefore, WiB* must be 0 (or if you show that internal forces do no work).

Thus,

Wit =T, -1

More generally:

Wi+ Wist =Ty = Ty
If all external forces are potential forces or the ones who are external do no work
and WiHt =0,
W12 _ We;nt __ yrext _ Vemt
=W =W 2

V = potential work where V¥t = 3" Vet Ve is the external force poten-
tial of particle .

‘ Tl + V'lemt — T2 + V'Qemt

Examples

Example 1

How does [ affect the motion? How does 6 affect the motion?

No rotations involved. Probably will not need angular momentum.

Kinematics

Describe the motion (kinematics) without forces
Knowing the location of A is equivalent to knowing the location of the center
of mass of M.

Vo =0Uxy
M m
ra=xt rg=2i+56s =i+ scosbi+ ssinfj
ra =2l g =a1+ $cosbi+ $sinfbj
A =&t ip = &+ Scosfi + 5sinf)

Note: Generalized coordinates. 7 and és are not L.
Important to define coordinates.
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Frictionless Surface

TR N S

Frictionless Road

Figure 4: Block on frictionless surface that moves on frictionless road. The mass
(m) can slide down the incline in a frictionless manner. Mass (M) is free to
move horizontally without friction. If mass (m) is released from rest at the !
position, find the velocity of mass (M) at the moment (m) reaches the bottom
of the incline. Figure by MIT OCW.

Figure 5: Diagram of kinematics of block on ramp. Need two sets of coordinates.

M only moves in the x-direction. m only moves in the é5 direction. Figure by
MIT OCW.
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