
Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and 
Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. 
Downloaded on [DD Month YYYY]. 

1 Kinematics of Rigid Bodies 

2.003J/1.053J Dynamics and Control I, Spring 2007

Professor Thomas Peacock


2/28/2007


Lecture 7 

2-D Motion of Rigid Bodies - Kinematics 

Kinematics of Rigid Bodies


Williams 3-3 (No method of instant centers) 

”Kinematics” - Description and analysis of the motions of objects without con­
sideration of the forces and torques causing them. 

Angular Velocity 

Define Angular Velocity 

Figure 1: Rigid body in inertial frame. Figure by MIT OCW. 

The angular velocity of the rigid body: 

dθ 
ω = êz

dt 
ω is a property of the body. 

ω is independent of the choice of ’painted line’ or the reference fixed direction 
(Bedford & Fowler 6-2, 6-3) 
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2 Kinematics of Rigid Bodies 

Calculation of Velocity of a Point P on a Rotating Rigid

Body


Figure 2: Rotating Rigid Body. O is fixed in the frame. Rotation axis passes 
through O. Figure by MIT OCW. 

For any point on the body P: 

v = ω × rp 

More generally, for any vector R on the body: 

R = r
2 − r

1 

Figure 3: Rigid Body Rotating. Figure by MIT OCW. 

Therefore: 
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3 Kinematics of Rigid Bodies 

dR d 
dt 

= 
dt 

(r
2 − r

1
) 

= ω × (r
2 − r

1
) 

= ω × R 

B is moving on a circular path relative to A → although neither A or B is the 
axis of rotation. 

Velocity of a Point P on Rotating and Translating Rigid 
Body 

Often we have a combination of rotation and translation: 

Figure 4: Three Bar Linkage. Figure by MIT OCW. 

Bar AC: Fixed axis rotation about A: 

dφ 
ωAC = êz

dt 
Bar BD: Fixed axis rotation about B: 

dζ 
ωBD = êz

dt 
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4 Kinematics of Rigid Bodies 

Bar CD: Motion is a combination of rotation and translation.

At any point in time, we may locate CD by locating the point C. (Covers the

translation) and identify the angle θ the CD makes with the horizontal.


Figure 5: Free Body Diagram of Rod CD. Figure by MIT OCW. 

Angular velocity is ωCD = dθ êzdt 

ωCD is independent of choice of point C. Bar has intrinsic rotation. 

The motion of a rigid body is expressed as a combination of translation of a 
point fixed on the body and rotation about an axis passing through this point 
→ need (x, y, θ).


(In a rigid body, particles are constrained to be the same distance apart.)




Figure 6: Angular velocity is not affected by location of direction line and 
painted line. Although the direction line and painted line are different than 
those in Figure 5, the angular velocities are the same. Suppose you had a 
different point E, with a direction line and painted line as shown. The relation-

dθ dθ ship is ω = 
dt êz = 

dt êz. This independence of the angular velocity from the 
choice of direction line and painted line is explained in Williams, James H., Jr. 
Fundamentals of Applied Dynamics. New York, NY: John Wiley, 2006. ISBN: 
9780470133859. Figure by MIT OCW. 
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5 Kinematics of Rigid Bodies 

Aside: 

Formalize: 

Compute the velocity of any point P on a rigid body. 

Now: 

Rp = RG + r 

dθ 
ω = êz

dt 

d dRG dr 
v = R = +p pdt dt dt 

vp = vG + ω × r 

Use vp = vG + ω × r. This relationship will be used often in finding the velocity 
of the body needed for the angular momentum principle. 

vP = vG + ω × r 

We can express the motion of any point on a rigid body in terms of translation 
of another point on the body and a rotation about that point. 
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Kinematics of Rigid Bodies 6 

Figure 7: A rotating rigid body with two selected points P and G. The velocity 
at point P can be expressed in terms of the velocity at point G plus a term 
to represent the rotation of the point P around the point G. The term is the 
cross product of the angular velocity with the vector r, which is position vector 
pointing from G to P. The angular velocity is set by the fixed reference direction, 
the painted line, and the rate at which the angle between those two lines changes. 
Figure by MIT OCW. 

Example: Car With Swinging Bar 

Figure 8: Car with swinging bar. Figure by MIT OCW. 

Find the velocity of point B. 

(Motion of Rod AB) = (Translation of A)+(Rotation about axis passing through A) 

Angular velocity of the bar is ωAB = θ̇êz. 

vB = vA + ω × rAB 

vA = ẋêx 
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7 Kinematics of Rigid Bodies 

Figure 9: Kinematic Diagram of Rod AB. Figure by MIT OCW. 

ω = θ̇êz 

= (L sin θ)êx − (L cos θ)êy 

vAB = ˙ex + (θ̇êz ex − L cos θêy) = ( ˙ θL cos θ)êx θL sin θ)êyxˆ ) × (L sin θˆ x + ˙ + ( ̇

rAB 
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8 Kinematics of Rigid Bodies 

Geometric Constraints


Figure 10: Rigid Body subject to rotation. Figure by MIT OCW. 

Figure 11: Ball rolling along x-direction. Figure by MIT OCW. 

If you have (xG, yG, θ), then the state of your rigid body is uniquely defined. 
Complete set of coordinates. 

A complete set of coordinates may not be independent; however, due to geo­
metric constraints. 
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9 Kinematics of Rigid Bodies 

Example: Rolling Hoop 

Figure 12: Rolling hoop. Hoop rolls without slipping. Mass m is attached to 
the hoop. Figure by MIT OCW. 

Want to specify the position of the mass. 

Pick c as the reference point. 

xm = xc − r sin θ 

ym = yc − r cos θ 

xc, yc, θ form a complete coordinate system. 
But there are 2 constraints on the surface. 

1. Rolls on surface 
2. Rolls withoug slipping (no sliding) 

3 coordinates, 2 constrained. Therefore, only 1 generalized coordinate is re­
quired to describe m. 

1.	 Rolls on surface 
yc = r 

2.	 No Slip: 
= 0 for no slip 

vB = vC + ω × rCB 

ω = −θ̇êz 

rCB = −rêy 

ω × rCB = −rθ̇êx 

= 0 = ẋcêx − rθ̇êx 

ẋc = rθ̇ 

xc = rθ 

vB 

vB 
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10 Kinematics of Rigid Bodies 

Figure 13: Hoop rolls along x-direction where distanced travelled equals rθ. 
Figure by MIT OCW. 

This statement means the displacement xc is equal to the part of the hoop’s 
circumference rθ. 

Thus, we can choose a single generalized coordinate to describe the state of 
the system. θ chosen! 

xM = rθ − r sin θ 

yM = r − r cos θ 

This completely defines the system. 

Note: If slipping is allowed, need xc and θ to describe state of the system. This 
is because the hoop could slide (translate without rotation). 


