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1 Kinetics of Rigid Bodies 

2.003J/1.053J Dynamics and Control I, Spring 2007

Professor Thomas Peacock


3/7/2007


Lecture 9 

2D Motion of Rigid Bodies: Kinetics, Poolball 
Example 

Kinetics of Rigid Bodies 

Angular Momentum Principle for a Rigid Body 

Figure 1: Rigid Body rotating with angular velocity ω. Figure by MIT OCW. 

HB = 
�

ri × mi(v c + ω × ρ 
i
) 

i 

After some steps (see Lecture 8): 

HB = r × P + miρ × ω × ρ c	 i i 
i 

We now use: 

a × b × c = (a · c)b − (a · b)c 

ρ × ω × ρ = ρi 
2ω − (ω · ρ )ρ 

i i i i 

= ρ2 
i ω 
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2 Kinetics of Rigid Bodies 

For 2-D motion, ω · ρ = 0 because the vectors are ⊥. For 3-D, this term does 
i 

not have to be 0. 

HB = rc 
� 

× P + 
�

miρ
2ω 
i 

i 

= rc × P + Icω 

Ic: Moment of Inertia. Ic = 
�

i miρi 
2 (Intrinsic Property of Rigid Body) 

Example: 

Figure 2: Hoop and Disc, both with mass M . Figure by MIT OCW. 

× P + IcωHB c 

If one takes angular momentum about the center of mass: 

H c = Icω 

(Angular Momentum about B) = (Angular Momentum about C) + (Moment

of Linear Momentum about B)


Therefore:


HB = H c c × P 

Special Case of Fixed Axis of Rotation about B 

i.e. v c = vB + ω × r c 

= r 

+ r 
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Kinetics of Rigid Bodies 3 

Figure 3: Rigid body which pivots about B. Figure by MIT OCW. 

HB = HC + rc × m(ω × r c) 
2 = HC + mr ωC 

2= (IC + mr )ω = IB ωC 

2IB = IC + mr Parallel Axis Theorem C 

Only do this if the vB = 0 and vC = (ω × r 
� 

C ) 

Finally: 

τext 
B = 

d 
dt 

HB + vB × P 

HB = HC + r 
� 

C × P 

HC = IC ω 

(1) 

(2) 

(3) 

= miρ
2 
iIC (4) 

Equations (1) to (4) are always true. 

Special Cases 

1. B = C ⇒ r
C = 0; vB � P 

Start by thinking about motion around center of mass. 

d 
τB

ext = HC and HC = IC ω 
dt 
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4 Cue hitting a pool ball 

2. B is a stationary point and fixed in the body. 

d 
τext = HB and HB = IB ω where IB = IC + mr 

� 
2 

B Cdt 

What do we need to do still? 
Calculating moments of inertia ⇒ Recitation 5 
Work-Energy Principle 

Cue hitting a pool ball 

A pool ball of radius R and mass M is at rest on a horizontal table. It is set 
in motion by a sharp horizontal impulse J provided by the cue. Determine the 
height above the ball’s center that the cue should strike so that the subsequent 
motion is rolling without slipping. 

Figure 4: Cue ball diagram. Diagram shows cue ball when force if first applied 
and after being hit. Figure by MIT OCW. 

Hit below h: Backspin 
Hit above h: Top spin, carry on shot 

Kinematics: Geometry with no forces 

Horizontal Table: yC =constant = R

Rolling without slipping: vC = ωR (or xc = Rθ)

1 Degree of Freedom. (Use xC or θ).
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5 Cue hitting a pool ball 

Kinetics: Free Body Diagrams


Figure 5: Free Body Diagram of Cue Ball. Figure by MIT OCW. 

Impulse force that provides impulse J 

� 0
+ � 0

+ 

J = Fdt = Jδ(t)dt i.e. F = Jδ(t) 
0− 0− 

(i) Linear Momentum Principle 

d 
F ext = P 

dt 

y-direction: C always at same height. N = mg so no vertical motion of C. 
dx-direction: F = Jδ(t) = 
dt MvC . 

Integrate both sides 

� 0
+ � 0

+ � 0
+ 

d 
Fdt Jδ(t)dt = Mvcdt 

0− 0− 0− dt 

J = Mvc(0
+) − Mvc(0

−) 

J : Momentum Imparted 

J = MvC (0
+) (5) 

Angular Momentum Principle About C 

Taking momentum about C simplifies equations 
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6 Cue hitting a pool ball 

Figure 6: Angular Momentum Principle about C applied to Cue Ball. Figure 
by MIT OCW. 

d 
τ ext = H and HC = IC ωC cdt 

d 
rF × F = IC ω 

dt 

dω 
−Fhêz = −IC êz

dt � 0
+ � 0

+ 

dω 
Fhdt = IC dt 

0− 0− dt 
� 0

+ 

Jδ(t)dt = IC ω(0+) − IC ω(0−) 
0− 

IC ω(0−) = 0 because ω(0−) = 0. 

Jh = IC ω(0+) 

Impulsive torque about center of mass = Change of angular momentum caused 
by the torque 
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7 Cue hitting a pool ball 

Satisfying Constraints 

If there is no slip, one needs ω(0+)R = vC (0
+) 

Figure 7: Diagram of Cue Ball moving. This diagram demonstrates how to 
satisfy geometric constraints of movement. Figure by MIT OCW. 

IC vC (0
+)

J = (6) 
h R 

Can eliminate J from Equation 5 and Equation 6. 

MvC (0
+) = 

IC vC (0
+) 

⇒ h = 
IC 

h R mR 

For a sphere: 

2 2 
IC = mR2 ⇒ h = R 

5 5 

h: Independent of mass of sphere. Independent of force applied. 


