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Paula Echeverri, Professor Thomas Peacock
4/4/2007

Lecture 14

Lagrangian Dynamics: Virtual Work and
Generalized Forces

Reading: Williams, Chapter 5

L=T-V

dfoLy oL _,
dt\o¢ ) ogq '

All g; are scalars.

q;: Generalized Coordinates
L: Lagrangian

Q@;: Generalized Forces

Admissible Variations/Virtual Displacements

Virtual Displacement:
Admissible variations: hypothetical (not real) small change from one geometri-
cally admissible state to a nearby geometrically admissible state.
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Figure 1: Bead on a wire. Figure by MIT OCW.
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Both 4, and 6, are admissible variations. Hypothetical geometric configuration
displacement.

0#£d
ox # dx

dx implies t involved.

oy = —dj;(;) -z

Generalized Coordinates

Minimal, complete, and independent set of coordinates

s is referred to as complete: capable of describing all geometric configurations
at all times.

s is referred to as independent: If all but one coordinate is fized, there is a
continuous range of values that the free one can take. That corresponds to the
admissible system configurations.

Example: 2-Dimensional Rod
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Figure 2: 2D rod with fixed translation in « and y but free to rotate about 6.
Figure by MIT OCW.

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and
Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.
Downloaded on [DD Month YYYY].



Virtual Work 3

If we fix x and y, we can still rotate in a range with 6.

# degrees of freedom = # of generalized coordinates: True for 2.003J. True for
Holonomic Systems.

Lagrange’s equations work for Holonomic systems.

Virtual Work

W = ZL -dr, < Actual Work

1 = forces act at that location

oW = ZL - 0r; < Virtual Work

__ rapplied constrained
£ = £ g

) )
Constrained: Friction in roll. Constraint to move on surface. Normal forces.
Tension, rigid body constraints.

Sw =Y f*P.4r, =0 at equilibrium

No work done because no motion in direction of force. No virtual work.

WAL
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Example: Hanging Rigid Bar
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Figure 3: Hanging rigid bar. The bar is fixed translationally but is subject to
a force, F'. It therefore can displace itself rotationally about its pivot point.
Figure by MIT OCW.

Displacement:
oy , = —adb)
oy, = —166j
Forces:
F=-F)
R=R)

Two forces applied: ¢ = 2
ow = Fld0 — Radh =0
Fl
R = — at equilibrium
a

Could also have taken moments about O.
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Example: Tethered Cart

[

Figure 4: Tethered cart. The cart is attached to a tether that is attached to the
wall. Figure by MIT OCW.

ow = Féyp — Roéx. =0
yp = lsinf
Using dy = %6%
dyp = lcos Bl
0x, = —2lsin 6660

(—Flcosf +2Rsinf)s0 =0

—Flcosf+2Rsind =0= R = at equilibrium
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Figure 5: Application of Newton’s method to solve problem. The indicated
extra forces are needed to solve using Newton. Figure by MIT OCW.
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Generalized forces for Holonomic Systems 6

Generalized forces for Holonomic Systems

In an holonomic system, the number of degrees of freedom equals the number
of generalized coordinates.

ow = ZL Sr; = ZQiéqj

3

¢ = number of applied forces: 1 to n
j = number of generalized coordinates

r; =7i(q1,q2; - - - q5)
r;: Position of point where force is applied

" Or,

—

- dq;

or; = n

Substitute:

Y035 =3 (S a5 o

i J J

or.
Qj = E f.- afl Generalized Forces

f — fNC+fCONS.

fEONS-: Gravity, Spring, and Buoyancy are examples; Potential Function Exists.

ov
CcoNs. _ 9V
i - ar
Example:
Vg =mgz, r=2)
f,=—mgEi=—mgj
o D0 _ OV 0r 0V

dqg  Or 0q; __3_qj

The conservative forces are already accounted for by the potential energy term
in the Lagrangian for Lagrange’s Equation
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Example: Cart with Pendulum, Springs, and Dashpots 7

45

d (oL _a_LfQNC
dt 6q7 6qj‘_ J

- ar,
Q=215

Lagrange’s Equation

Qg-v ¢ = nonconservative generalized forces

oL ing OV
o4, contains 94 -

Example: Cart with Pendulum, Springs, and Dashpots
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F = Fgsinwt

Figure 6: The system contains a cart that has a spring (k) and a dashpot (c)
attached to it. On the cart is a pendulum that has a torsional spring (k;) and a
torsional dashpot (¢;). There is a force applied to m that is a function of time
F = F(t) We will model the system as 2 particles in 2 dimensions. Figure by
MIT OCW.
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Example: Cart with Pendulum, Springs, and Dashpots 8

4 degrees of freedom: 2 constraints. Cart moves in only 1 direction. Rod fixes
distance of the 2 particles.

Thus, there are a net 2 degrees of freedom. For 2.003J, all systems are holonomic
(the number of degrees of freedom equals the number of generalized coordinates).

g1 =

q2
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Figure 7: Forces felt by cart system. Figure by MIT OCW.

F';: Damper and Spring in —z direction

—(kz + ci)i

F,: Two torques:

T = —(ktt? + Cté]%

F, = Fysinwti
ry=2i=qi—r,
rp=rs+rg/a=(x+Ising)i—lcosfj—rs

ro = 0k (Torque creates angular displacement) = g2k
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Example: Cart with Pendulum, Springs, and Dashpots 9

@1
Ory 15 92 g 95 _ q;
o1 13, o1 0, o1 17
Q1= —cq1 + Fysinwt
ory Or, _ 17, Org _ ~ . o
e =0, 52 = 1k, e =lcosqo? + lsings)

Q2 = —cigo + Fysinwt - [ cos g2

With the generalized forces, we can write the equations of motion.

Kinematics

M:
Ty =l
Ty =&l
Ty = &1

m:

Ty = (@ +1sin@)i — lcosb)

m

i, = (& +lcosf - 0)i + Isin 06

i, = (& + I(cos 0)0 — I(sin 0)62)i + (I(sin 0)6 + I(cos 0)0%)j

Generalized Coordinates: ¢ = x and ¢ = 6.

Lagrangian

L=T-V
T=Ty+Thn

1 . . 1.
Ty = EM(ZM ) = §M$2

1
1 . .
= 5m(® + 2l cos 06 + 1°0%) (2)
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Example: Cart with Pendulum, Springs, and Dashpots 10

1 1 . .
T = §M¢2 + §m(:b2 + 2l cos 06 + 126%)

V= V]\J,g + MM,kZ + Vm,g + Vm,kt (3)
1 1
= Mg(0) + k(s - ) +mg (=l cost) + §kt92 (4)
Symbol Potential Energy
Vg Gravity on M
Vark Spring on M
Vin.g Gravity on m

Vin ke Torsional Spring on m

1 1
V= §kx2 + (—mgl cos ) + 5/6,592

Substitute in L =T -V

1 1 . o1 1
L= §Mj:2 + 5m(i72 + 2136 cos 0 + 176?) — 51«1:2 +mgl cosf — 5@92

Equations of Motion

Use % (g—;) — (%) = =, to derive the equations of motion. =; = @Q;.

From before, 2, = Fysinwot — ¢t and Zy = Fy(sinwt)l cos 6 — .

For Generalized Coordinate x

dx # 0 and 60 = 0. Units of Force.

oL
a—x = —kl’
g—i = (M + m)i + mi(cos )8

d (0L .. - : )2
= (%) = (M + m)i + mlfcos + mL(—sin )6

% (g—L) —(Z—L =| (M 4 m)Z + mlf(cos 0) + mi(—sin0)6? + kx = Fy sinwt — ci:
by x
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Example: Cart with Pendulum, Springs, and Dashpots 11

For Generalize Coordinate 6

d0x = 0 and d6 # 0. Units of Torque.

0L

5 = mlif(—sin ) — mglsinf — k0

B—I./ = mli cos § + mi?0
0o

i (6_L) = mli(—sin 9)9 + mli cos O + mi?6
dt \ 90
oL

di (—) %0 = milz6(— sin 0)+mli cos 0+mi20—mli6(— sin 6)+mgl sin 0+k,0

L L "
<8—) oL = | ml# cos @ + mi*0 + mglsin 0 + k0 = Fy(sinwt)l cos § — c,0
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