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2.003J/1.053J Dynamics and Control I, Spring 2007
Professor Thomas Peacock
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Lecture 15

Lagrangian Dynamics: Derivations of Lagrange’s
Equations

Constraints and Degrees of Freedom

Constraints can be prescribed motion

o T
o

X, X>

Figure 1: Two masses, m; and me connected by a spring and dashpot in parallel.
Figure by MIT OCW.

2 degrees of freedom

If we prescribe the motion of mq, the system will have only 1 degree of freedom,
only z5. For example,
x1(t) = o coswt

x1 = 21(t) is a constraint. The constraint implies that éx; = 0. The admissible
variation is zero because position of x; is determined.
For this system, the equation of motion (use Linear Momentum Principle) is

mj’jg = —]{7(1‘2 — X1 (t)) — C(i‘g — i‘l (t))

Mo + cto + kxo = ca1 (t) + kwl(t)
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Lagrange’s Equations 2

ci1(t) + ka1 (t): known forcing term
differential equation for z5(¢): ODE, second order, inhomogeneous

Lagrange’s Equations

For a system of n particles with ideal constraints

Linear Momentum

Z_')i _ i:wt +i§onstraint (1)

N

Z(ijmt + ijonstraint _ B

) =0 (2)
=1

Zifonstraint =0

1=1

D’Alembert’s Principle

N

D —p) 0 =0 (3)

i=1

Choose p; = 0 at equilibrium. We have the principle of virtual work.

Hamilton’s Principle

Now p, = m;i’, so we can write:

N
> (i — £ - or, =0 (4)
=1
N
oW =3 f o, (5)

=1

which is the virtual work of all active forces, conservative and nonconservative.

N N d
;mzfz 01y = Z mi {E(ii S0ry) = 1 - 07 (6)

i=1

@) is obtained by using %(i - 0r) = ¢ér + ror
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Lagrange’s Equations

I; - 07, can be rewritten as %5([' -r) by using 6(7" - 1) = 2767

Substituting this in (@), we can write:
Zml o1, _Zml or;) — 521m(7’a.¢~,)
: 2 -1 =1
The second term on the right is a kinetic energy term.

N g
Z 5 (r; - 1;) = 0(Kinetic Energy) = 6T

Now we rewrite (@) as:

ZmZ - o1, —Zfext or; =0

i=1
Substitute @) and [@ into @) to obtain:

Y4
i— (7, - or;) — 6T — W =0
;mdt(ﬁ r;)
Rearrange to give

N
6T 4 OW = Zmi%(g )
=1
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Lagrange’s Equations 4

Integrate (@) between two definite states in time r(¢1) and r(t2)

t ’x )
{t1,%,¥4) (t22)

X

Figure 2: Between t; and t3, there are admissible variations éz and dy. We are
integrating over theoretically admissible states between ¢; and ty that satisfy
all constraints. Figure by MIT OCW.

to to N d
/ (OW +6T)dt = /t1 Z mza(fl - 0r;)dt (10)

t1 i=1
N to
= mit, - or, (11)
i=1 t1
ta
The right hand side, >V | m7; - or;| = 0.
t1

to

Why? 7, - 0r;| = 0, because at a particular time, dr;(t;) = 0. Also, we know

ty
the initial and final states. It is the behavior in between that we want to know.

The result is the extended Hamilton Principle.

/tz (6W + 6T)dt = 0 (12)

ty
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Generalized Fores and the Lagrangian

5W — 5WCO’H.S€T7J(ItZ"U€ _"_ 5Wnonconservative — _JV + Z QJ(S(]J

j=1
Conservative dW:
oW = ij‘ms - 0r;
cons __ ov
ii - 821‘
ov
W = ——-dr;, = -0V
or;
Nonconservative §W:
Q509;
> @504,
j=1
m: Total number of generalized coordinates
Q; = Z;: Generalized force for nonconservative work done
q; = &;: Generalized coordinate
Substitute for 6W in ([[Z) to obtain:
to m
/ (OT =6V + " Q;0g;)dT =0 (13)
ty

Jj=1

Define Lagrangian

The Lagrangian is a function of all the generalized coordinates, the generalized
velocities, and time:

L = L(qgj,q;,t) where j =1,2,3...,m

@) can now be written as

to m
/ |:5L(qj',qj',t) +ZQJ'5%] dt =0 (14)
ty

j=1
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Lagrange’s Equations 6

Lagrange’s Equations

We would like to express 6L(g;, ¢;,t) as (a function) - dg;, so we take the total
derivative of L. Note dt is 0, because admissible variation in space occurs at a

fixed time.
oL oL oL
“‘?[(aqj)‘g% (57 )oi+ (5)

/:(5L)dt_ /ttzi[(gi)(;% (%)@}dt )

=1

To remove the 6¢; in ([[H), integrate the second term by parts with the following
substitutions:

_afor
dt \ 9g;
y = dg;
dy = 0q;

m

b2 aL> "2 /9L
/tl Z(‘%‘ & Z 4, \0qj &

J=1

Ui oL 2 e T g QL
S0l [ [4(2) )
j_1{<3qj) O L \ag )™
oL t2
(8%') q7t1

" /0L & d (0L
= "5 (B
/t Z(%) o I;df 94, )" (o)

1 j=1

Combine ([[@), [[H), and [I8) to get:

to M d 6
t =1
to M d 5L oL
/tl J;l {_E<a_q7>+<aq7>+Qﬂ] dg;dt =0
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Example 1: 2-D Particle, Horizontal Plane 7

dt has finite values.
dg; are independent and arbitrarily variable in a holonomic system. They are
finite quantities. Thus, for the integral to be equal to 0,

d [ OL oL
~a(a)* () o=

Equations of Motion (Lagrange):

d (0L oL
Qi = a(@)‘(a—%)
or:
_ 1(8_11)_(@)
i)\

Where Q; = Z; = generalized force, g; = & = generalized coordinate, j =
index for the m total generalized coordinates, and L is the Lagrangian of the
system.

Although these equations were formally derived for a system of particles, the
same is true for rigid bodies.

Example 1: 2-D Particle, Horizontal Plane

e
>

Figure 3: 2-D Particle on a horizontal plane subject to a force F'. Figure by
MIT OCW.
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Example 1: 2-D Particle, Horizontal Plane

Cartesian Coordinates

@1 = Fcos¥
Q2:Fsin9
L=T-V

1
T:Em(i’ T)

1 ) )
= §m(qf +d3)

(in horizontal plane, position with respect to gravity same at all locations)

V=0
For ¢1 or ()
oL
—~ —0
oq
o _
o
d oL ,
atog, H

‘mijl—OZFCOSG‘
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Example 1: 2-D Particle, Horizontal Plane 9

Polar Coordinates

r

¢

A

Figure 4: 2-D Particle subject to a force F' described by polar coordinates.
Figure by MIT OCW.

r=r(t)é,

P =76, 4 rés
|Q|2 — 7;2 + 7,2&2

1. .
L=T-V =c-m(¢ +q¢}§)+0

2
q1:
L i
66]1 = mqi4qs
d (0L o
at\ag )~ "
q2:
oL
0
0q2
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Example: Falling Stick 10

d 8[1 d 2, . . 2..
_— _ = — == 2
p <aq2) p (mqige) = m(2q141G2 + q1G2)

¢, Qi =F,
Q2 = Fy - r: moment.

m(241q142 + 4iG2) = Fy - a

‘m(2(11(12 +q1G2) = Fy ‘

‘mijl —mqiGe = F;

Example: Falling Stick

mg

1«4 /s
/1157111

=0 (frictionless) = Slips

Figure 5: Falling stick. The stick is subject to a gravitational force, mg. The
frictionless surface causes the stick to slip. Figure by MIT OCW.

G: Center of Mass

[: length

Constraint: 1 point touching the ground.
2 degrees of freedom

@ =g
g2 = ¢

Must find L and @;. Look for external nonconservative forces that do work.

None. Normal does no work. Gravity is conservaitve.

Q1=0Q2=0
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Example: Falling Stick

11

Lagrangian

L=T-V

Rigid bodies: Kinetic energy of translation and rotation

1 1
T = §m(ﬁc “Tg)+ §IG(£ ‘W)

l
yg = §singz5
. l :
yc = §COS¢¢
w = ok

i = Gt + 6] = dai + 5 008 69)]

2 :
PGt =ig+ 1 cos” ¢
[, 2 o] 11 .
T = 3 [q% +7 cos? ngg} +3 <Emlz>q§

See Lecture 16 for the rest of the example.
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