2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock $\frac{4/11/2007}$

Lecture 16

Lagrangian Dynamics: Examples

Example: Falling Stick (Continued)

Sliding without friction

Figure 1: Falling stick. The surface on which the stick rests is frictionless, so the stick slips. Figure by MIT OCW.

A stick slides with out friction as it falls. Length: LMass: MC: Center of Mass Assume uniform mass distribution.

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

 x_c, ϕ : Generalized Coordinates

Figure 2: The falling stick is subject to a normal force, N at the point of contact. Figure by MIT OCW.

Holonomic (constraint forces do no work). No tangential forces at P. Normal force is a constraint force. N does no work.

Kinematics

$$\underline{r}_{c} = x_{c}\hat{i} + y_{c}\hat{j} = x_{c}\hat{i} + \frac{L}{2}\sin\phi\hat{j}$$
$$\underline{v}_{c} = \dot{x}_{c}\hat{i} + \frac{L}{2}\dot{\phi}\cos\phi\hat{j}$$

Energy

$$T = \frac{1}{2}m|\underline{v}_c|^2 + \frac{1}{2}I|\underline{\omega}|^2 \tag{1}$$

$$= \frac{1}{2}m(\dot{x}_c^2 + \frac{L^2}{4}\dot{\phi}^2\cos^2\phi) + \frac{1}{2}I_c\dot{\phi}^2$$
(2)

$$V = mg\frac{L}{2}\sin\phi$$

Generalized Forces

 $\Xi_{x_c}=0,\,\Xi_{\phi}=0.$ (Professor Sarma uses Q for generalized forces.) Professor Williams uses $\Xi.$

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Forces: Conservative [gravity] + Nonconservative [normal]. The constraint force (normal force) does no work. As we change x_c and ϕ , no virtual work (no displacement in direction of force).

Lagrangian (L)

$$T - V = L$$
$$L = \frac{1}{2}m(\dot{x}_{c}^{2} + \frac{L^{2}}{4}\dot{\phi}^{2}\cos^{2}\phi) + \frac{1}{2}I_{c}\dot{\phi}^{2} - mg\frac{L}{2}\sin\phi$$

Equations of Motion

We can derive 1 equation per generalized coordinate

For x_c :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_c} \right) - \frac{\partial L}{\partial x_c} = \Xi_{x_c}$$

 $\frac{\partial L}{\partial \dot{x}_c} = m \dot{x}_c, \ \frac{\partial L}{\partial x_c} = 0, \ \Xi_{x_c} = 0.$

$$\frac{d}{dt}(m\dot{x}_c) = m\ddot{x}_c \Rightarrow \boxed{m\ddot{x}_c = 0}$$

For ϕ :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = \Xi_{\phi} \tag{4}$$

$$\frac{\partial L}{\partial \dot{\phi}} = \left(\frac{L^2}{2} \dot{\phi} \cos^2 \phi\right) \frac{m}{2} + I_c \dot{\phi} \tag{5}$$

$$\frac{\partial L}{\partial \phi} = \frac{1}{2}m\left(-\frac{L^2}{2}\dot{\phi}^2\cos\phi\sin\phi\right) - mg\frac{L}{2}\phi \tag{6}$$

$$\Xi_{\phi} = 0 \tag{7}$$

Substitute (5), (6), and (7) in (4) to obtain (8):

$$\frac{d}{dt}\left[\left(\frac{mL^2}{4}\cos^2\phi + I_c\right)\dot{\phi}\right] + \frac{mL^2}{4}\dot{\phi}^2\cos\phi\sin\phi + mg\frac{L}{2}\cos\phi = 0 \qquad (8)$$

Differentiating the first term results in (10). Substituting in (8) and combining terms yields the equation of motion for ϕ .

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\phi}}\right) = \frac{d}{dt}\left[\left(\frac{mL^2}{4}\cos^2\phi + I_c\right)\dot{\phi}\right] \tag{9}$$

$$= \left(\frac{mL^2}{4}\cos^2\phi + I_c\right)\ddot{\phi} + \left(-\frac{mL^2}{2}\cos\phi\sin\phi\dot{\phi}\right)\dot{\phi} \qquad (10)$$

$$\left(\frac{mL^2}{4}\cos^2\phi + I_c\right)\ddot{\phi} - \frac{mL^2}{2}\left(\cos\phi\sin\phi\right)\dot{\phi}^2 + \frac{mL^2}{4}\left(\cos\phi\sin\phi\right)\dot{\phi}^2 + \frac{mgL}{2}\cos\phi = 0$$
(11)

$$\left(I_c + \frac{mL^2}{4}\cos^2\phi\right)\ddot{\phi} - \frac{mL^2}{4}(\cos\phi\sin\phi)\dot{\phi}^2 + \frac{mgL}{2}\cos\phi = 0$$

This equation is nonlinear.

Equation of Motion by Momentum Principles

Let us derive the equations of motion using momentum principles as a comparison.

Forces

Figure 3: Free body diagram of falling stick. Two forces act on the stick, a normal force, N and a gravitational force, mg. Figure by MIT OCW.

Apply linear momentum principles:

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

$$\sum \underline{F}^{ext} = \frac{d}{dt}\underline{P}$$

Here $\underline{P} = m\dot{x}_c\hat{\imath} + m\frac{L}{2}\dot{\xi}\cos\xi\hat{\jmath}.$

$$\frac{d\underline{P}}{dt} = m\ddot{x}_c\hat{\imath} + m(\frac{L}{2}\ddot{\xi}\cos\xi - \frac{L}{2}\dot{\xi}^2\sin\xi)\hat{\jmath}$$

There are no forces in the x-direction, therefore

$$\ddot{x}_c = 0$$

In the y-direction:

$$N - mg = m\frac{L}{2}\ddot{\xi}\cos\xi - \frac{L}{2}\dot{\xi}^2\sin\xi \tag{12}$$

We need to eliminate N, so use the angular momentum principle.

$$\tau_c^{ext} = \frac{d}{dt} H_c = \frac{d}{dt} (I_c \dot{\xi})$$
$$- N \frac{L}{2} \cos \xi = I_c \ddot{\xi}$$
(13)

After combining equations (12) and (13) and algebra:

$$(I_c + \frac{mL^2}{4}\cos^2 \xi)\ddot{\xi} - \frac{mL^2}{4}\dot{\xi}^2\sin\xi\cos\xi + mg\frac{L}{2}\cos\xi = 0$$

Thus, we have derived the same equations of motion. Some comparisons are given in the Table 1.

Advantages of Lagrange	Disadvantages of Lagrange
Less Algebra Scalar quantities No accelerations No dealing with workless constant forces	No consideration of normal forces Less feel for the problem

Table 1: Comparison of Newton and Lagrange Methods

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Example: Simple Pendulum

Figure 4: Simple pendulum. The length of the pendulum is l. Figure by MIT OCW.

Kinematics

 θ is the generalized coordinate.

Holonomic system (nomral force at P does not move as θ changes. Does no work).

Energy

$$T = \frac{1}{2}m(l\dot{\theta})^2$$
$$V = -mgl\cos\theta$$

Lagrangian

$$L = T - V = \frac{1}{2}m(l\dot{\theta})^2 + mgl\cos\theta$$

Generalized Forces

 $\Xi_{\theta} = 0$ (No Generalized Forces)

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Equations of Motion

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = \Xi_{\theta}$$
$$\frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta}, \ \frac{\partial L}{\partial \theta} = -mgL \sin\theta, \ \Xi_{\theta} = 0, \ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = ml^2 \ddot{\theta}$$
$$\boxed{ml^2 \ddot{\theta} + mgL \sin\theta = 0}$$

Alternative View

What if we did not realize that gravity is a conservative force?

Figure 5: Moving pendulum. When the pendulum rotates by $\delta\theta$, the distance traversed is $l\delta\theta$. Figure by MIT OCW.

What happens to Lagrange's Equations?

Lagrangian

$$T = \frac{1}{2}m(l\dot{\theta})^2$$
$$V = 0$$
$$L = T - V = \frac{1}{2}m(l\dot{\theta})^2$$

No potential forces, because gravity is not conservative for the argument.

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Virtual Work and Generalized Forces

$$\delta w^{NC} = -mgl\sin\theta\delta\theta$$
$$\Xi_{\theta} = -mgl\sin\theta$$

When you displace by $\delta\theta$ the displacement will have a vertical component. It is in the opposite direction of the force.

Equations of Motion

$$\frac{\partial L}{\partial \dot{\theta}} = m l^2 \dot{\theta}, \ \frac{\partial L}{\partial \theta} = 0, \Xi_{\theta} = -mg l \sin \theta$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = \Xi_{\theta}$$
$$mL^2 \ddot{\theta} - 0 = -mgl\sin\theta$$
$$mL^2 \ddot{\theta} + mgl\sin\theta = 0$$

Same equation.

It does not matter if you recognize a force as being conservative, just do not account for the same force in both V and Ξ .

Example: Cart with Pendulum and Spring

3 degrees of freedom

Figure 6: Cart with pendulum and spring. Figure by MIT OCW.

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Kinematics

Three generalized coordinates x, θ, s

Cart:

```
x_m = xy_m = 0
```

Pendulum:

$$x_m = x + s \sin \theta$$
$$\dot{x}_m = \dot{x} + \dot{s} \sin \theta + s \cos \theta \dot{\theta}$$
$$y_m = -s \cos \theta$$

 $\dot{y}_m = -\dot{s}\cos\theta + s\sin\theta\dot{\theta}$

Energy

Kinetic Energy (T):

$$\frac{1}{2}M\dot{x}^2 + \frac{1}{2}[(\dot{x} + \dot{s}\sin\theta + s\cos\theta\dot{\theta})^2 + (s\sin\theta\dot{\theta} - \dot{s}\cos\theta)^2]$$

Potential Energy (V): 2 conservative forces - Spring and Gravity

$$V = -mgs\cos\theta + \frac{1}{2}k(s-l)^2$$

Generalized Forces in System

No work from normal forces because cart rolls without slipping.

$$\Xi_x = \Xi_\theta = \Xi_s = 0$$

Lagrangian

$$L = T - V = \frac{1}{2}(M + m)\dot{x}^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + 2\dot{x}(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)) + mgs\cos\theta - \frac{1}{2}k(s-l)^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}^2 + \frac{1}{2}m(\dot{s}^2 + s^2\dot{\theta}\cos\theta + \frac{1}{$$

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Equations of Motion

For Generalized Coordinate x

x:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = \Xi_x$$
$$\frac{\partial L}{\partial \dot{x}} = (M+m)\dot{x} + m(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)$$
$$\frac{L}{x} = 0, \ \Xi_x = 0$$

 $\frac{\partial L}{\partial x}$

$$\frac{d}{dt}[(M+m)\dot{x} + m(\dot{s}\sin\theta + s\dot{\theta}\cos\theta)] = 0$$

 $\dot{x}(t), \dot{s}(t), s(t), \theta(t)$ are all functions of time.

 $(M+m)\ddot{x} + m\ddot{s}\sin\theta + m\dot{s}(\cos\theta)\dot{\theta} + m\dot{s}\dot{\theta}\cos\theta + ms\ddot{\theta}\cos\theta - ms\dot{\theta}(\sin\theta)\dot{\theta} = 0$

For Generalized Coordinate θ

 θ :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = \Xi_{\theta}$$
$$\frac{\partial L}{\partial \dot{\theta}} = ms^2 \dot{\theta} + m\dot{x}s \cos \theta$$
$$\frac{\partial L}{\partial \theta} = m\dot{x}\dot{s} \cos \theta - m\dot{x}s\dot{\theta} \sin \theta - mgs \sin \theta, \ \Xi_{\theta} = 0$$
$$\frac{d}{dt} [ms^2 \dot{\theta} + m\dot{x}s \cos \theta] - m\dot{x}\dot{s} \cos \theta + m\dot{x}s\dot{\theta} \sin \theta + mgs \sin \theta = 0$$

 $2ms\dot{s}\dot{\theta} + ms^2\ddot{\theta} + m\ddot{x}s\cos\theta + m\dot{x}\dot{s}\cos\theta - m\dot{x}s\sin\theta\dot{\theta} - m\dot{x}\dot{s}\cos\theta + m\dot{x}s\dot{\theta}\sin\theta + mgs\sin\theta = 0$

$$s\ddot{\theta} + 2\dot{s}\dot{\theta} + \ddot{x}\cos\theta + g\sin\theta = 0$$

For Generalized Coordinate s

 $m\ddot{s} + m\ddot{x}\sin\theta - ms\dot{\theta}^2 - mg\cos\theta + k(s-l) = 0$

Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].