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Example: Spinning Hoop with Sliding Mass (Continued)


Lagrangian 

1 
L = m(a 2 sin2 θΩ2 + a 2θ̇2) + (−mga cos θ)

2 
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Figure 1: Spinning hoop with sliding mass. Figure by MIT OCW. 



Example: Spinning Hoop with Sliding Mass (Continued) 2 

Lagrange’s Equation for θ 

2
g

 ̈ θ − sin θ   
cos θΩ + sin θ = 0 (1) 

a 

Equilibrium Points 

θ = 0, π, arccos g
 aΩ2

The third point only exists if g
aΩ2 ≤ 1. 

Stability Analysis 

Stability around θe = arccos(g/aΩ2) 

θ = arccos g
e 2 ⇒aΩ

stable. 

θ  =  θe + � ⇒ �̈ + Ω2 sin2 θe� = 0 

Oscillatory Behavior. 

Stability around θe = 0 

˙ ¨θe = 0 ⇒ consider small changes θ = θe + �, θ = �̇, θ = �̈ 

g
�̈ �Ω2
−  g 

+ � = 0 ⇒ �̈ + (  Ω2
− )� = 0 (2) 

a a 

Ω2: Controlled parameter. If Ω2 is small,  behavior is stable. If Ω2 > g
a
, behav­

ior is unstable. 

 Stable: Ω2 < g
a 

 Unstable: Ω2 > g

a 

If we look for a solution to Equation 1 of the form � = Aeλt, we have: 

λ2
 

2  A λt g
e + ( − Ω )Aeλt = 0 

a 
 

g 
λ =  ± (Ω2 − ) 

a 

If Ω2 < g

�

a , λ is imaginary ⇒ oscillation.

 2  g If Ω >

a
, λ is real ⇒ exponential growth.
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3 Example: Spinning Hoop with Sliding Mass (Continued) 

Stability around θ 
e = π 

θe = π 
θ = θe + � = π + � 

From Equation (1) 

�̈ − sin(π + �) cos(π + �)Ω2 + 
g 

sin(π + �) = 0 
a 

sin(π + �) = sin π cos � + cos π sin � ≈ −� 

cos(π + �) = cos π cos � − sin π sin � ≈ −1 

�̈ − �Ω2 
− 

g
� = 0 

a 

�̈−(Ω2+ 
g 
)� = 0 ⇒ Unstable, because of the negative sign in front of the � term. 

a 

Regime Diagram 

Plot a regime diagram. 

Figure 2: Regime diagram for modeled system. Depending on the the angle and 
angular velocity, the system may be in a stable or an unstable regime. Figure 
by MIT OCW. 

The solutions are symmetrical around the x-axis: the mass can rise on either 
side. The solutions are symmetrical around the y-axis (Ω and −Ω), because the 
hoop can spin clockwise or counterclockwise with the same behavior. 

For θe = π, −π, the equilibrium point is unstable for all Ω. For θe = 0, the 
equilibrium point is stable until Ω2 = 

a

g . Beyond that Ω the point is unstable. 
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Alternative Method to Derive Linearized Perturbation Equations 4 

For θe = arccos ( g ), the equilibrium point exists for g = Ω2 and then θ grows 
aΩ2 a 

as Ω2 increases. The equilibrium point is stable. 
This system exhibits stability behavior known as a pitchfork bifurcation. At 

first, the mass oscillates about θ = 0. As Ω is increased towards Ω2 = g/a 
those oscillations continue until Ω2 > g/a. At that point, the mass rises to 
arccos g/aΩ2 on one side of the hoop. θ continues to increase but it will not 
reach π or −π. Because perturbation can cause the mass to rise either at θ or 
−θ, the behavior is called a bifurcation. 

Alternative Method to Derive Linearized Perturbation 
Equations 

This method makes approximations at the level of the Lagrangian. Then one 
differentiates to obtain linearized equations of motion. Do not use this method 
if there is any uncertainty about the equilibrium points. This method does not 
give the nonlinear equations of motion needed to find the equilibrium points. 

Cart with Pendulum and Spring Example Revisited 

Figure 3: Cart with Pendulum and Spring. Figure by MIT OCW. 

This example is explained in full in Lectures 16, 17, and 18. 

1 
2 1 

2 1 
k(s− l)2L = (M +m)ẋ + m(ṡ +s 2θ̇2 +2ẋ(ṡ sin θ +sθ̇ cos θ))+mgs cos θ − 

2 2 2 

Alternative Method: 
1. Assume equilibrium solution is known. 
2. Consider small changes to the variables. 
3. Expand L up to its quadratic terms. 
4. Use the approximate L in Lagrange’s Equations to obtain linearized quations 
for stability analysis. 
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Alternative Method to Derive Linearized Perturbation Equations 5 

Assume Equilibrium Solution is Known 

Equilibrium Solution: θ = 0, s0 = l + mg , s = s0 + �, x =any value. Use 0 for 
k 

this example. 

This method helps if you already know all the equilibria. 

Consider Small Changes to the Variables 

� � � ��� 

L =
1 

(M + m) ˙2 +
1 
m �̇2 + (s0 + �)2 

x �θ + (s0 + �) θ̇ θ̇2 

x θ̇2 + 2 ˙ ˙ 1 − 
2 2 2 

θ2 1 2 
+ Mg (s0 + �) 1 − − k (s0 + � − l)

2 2 

Sine and Cosine Approximations 
sin θ ≈ θ − θ

3 

3! 

cos θ ≈ 1 − θ
2 

2 

Expand L up to its quadratic terms 

L = 
1
(M +m)ẋ 2 + 

1
(�̇2 +s0

2θ̇2 +2ẋs0θ̇)+mgs0 +mg�−mgs0 
θ2 

− 
1 
k(s0 +�−l)2 

2 2 2 2

1 1 1


− k(s0 + � − l)2 = − k(s0 − l)2 
− k(s0 − l)� − k�2 

2 2 2 
Retained only quadratic nonlinearity in Lagrangian. 
Keep only quadratic terms because when one differentiates, the quadratic terms 
will become linear terms. 

Use Lagrange’s Equations to Obtain Linearized Equations of Motion 

x: 

d ∂L ∂L 
− = 0 

dt ∂ẋ ∂x 

∂L 
= (M + m)ẋ + ms0θ̇ 

∂ẋ

∂L 
= 0 

∂x 

d ∂L ¨ ¨ = (M + m)ẍ + ms0θ = 0 ⇒ (M + m)ẍ + ms0θ = 0 
dt ∂ẋ
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6 Pitchfork Bifurcations 

θ: 

d ∂L ∂L 
dt ∂θ̇ − 

∂θ 
= 0 

� � 
∂L 2 = ms 0θ̇ + ms0ṡ
∂θ̇ 

∂L 
= mgs0θ 

∂θ 

ms 0
2θ ̈+ ms0ẍ + mgs0θ = 0 

¨ s0θ + ẍ + gθ = 0 

d ∂L ∂L 
− 

dt ∂�̇ ∂� 

∂L 
= �̇m 

∂�̇ 

∂L 
= mg − k(s0 + � − l)

∂� 

m�̈ − mg + ks0 + k� − kl = 0 

m�̈ + k� = 0 

Pitchfork Bifurcations 

Figure 4: Bifurcation diagram. Figure by MIT OCW. 

Only stable paths observable in the real world. 

(http://ocw.mit.edu)
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7 Pitchfork Bifurcations 

Changes in the control parameter determine what will happen. 

Bifurcations: Turn up often in nonlinear dynamics. 

Example: Rod Compression 

Figure 5: Rod compression. Rod buckles either to left or right. Configuration 
determined by initial perturbation after applying force. 

Example: Liquid Crystal Displays 

Liquid Crystal Display: Thin rodlike molecules. Back light gets through polar­
izer. 

Figure 6: Schematic of liquid crystal display. Figure by MIT OCW. 

Elastic forces that prevent reorientation. 
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8 Pitchfork Bifurcations 

Figure 7: Schematic of liquid crystal display once light passes through. Figure 
by MIT OCW. 


