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1 Single Degree of Freedom System 

2.003J/1.053J Dynamics and Control I, Spring 2007

Professor Thomas Peacock


5/2/2007


Lecture 20 

Vibrations: Second Order Systems with One

Degree of Freedom, Free Response


Single Degree of Freedom System


Figure 1: Cart attached to spring and dashpot. Figure by MIT OCW. 

mẍ + cẋ + kx = F (t) 

System response? What is x(t)? 

Use 18.03 Background. 

x(t) = Free Response + Response Due to Forcing 
� �� � � �� � 

Complementary Solution, when F (t)=0 Particular Solution 

This lecture will cover the Free Response. 
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2 Free Response 

Free Response 

Look at k 0→ 

Figure 2: Cart with dashpot only. Figure by MIT OCW. 

mẍ + cẋ = 0 

Assume conditions x(0) = x0 and ẋ(0) = v0. 

mẍ + cẋ = mv̇ + cv = 0 

v = v0e
(−ct/m) already used ẋ(0) = v0 

Integrate v(t) once. Using x(0) = x0, we obtain: 

x = x0 + 
mv0 �

1 − e − c t
� 

m 

c 

Figure 3: Solution to differential equation. Solution attenuates to a steady state 
value. Figure by MIT OCW. 
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3 Free Response 

Figure 4: Velocity profile of solution. Velocity attenuates to zero. Figure by 
MIT OCW. 

No oscillations. Because k = 0, there was no restoring term. 

Look at m 0→ 

cẋ + kx = 0 

or 
k 

ẋ = − x 
c 

x(0) = x0 

Therefore: 

t 
cx(t) = x0e − k 

Figure 5: Solution to differential equation. Position decays to zero. Figure by 
MIT OCW. 
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4 Free Response 

Figure 6: Velocity profile of solution. Value attenuates to steady state value. 
Figure by MIT OCW. 

kx0 − k t 
cẋ = − e 

c 

No oscillations in this system.

Dashpot force balances the spring force as x 0, spring force 0.
→ → 

Vibrations require a restoring force (e.g. spring) and inertia (e.g. mass). 

Full Free Response Problem 

So let us consider the full problem: 

mẍ + cẋ + kx = 0 (1) 

Note that cẋ(c > 0) is a damping term and is responsible for decay of oscillations. 

Examination of Energy 

d d 
� 

1 2 1 
kx2 

� 

= mẋẍ+ kx ẋ = ẋ(mẍ+ kx) = ẋ(−cẋ) = −cẋ2(T + V ) = mẋ + 
dt dt 2 2 

For c > 0: 

d 
(T + V ) < 0 

dt 
Damping. Mechanical energy is dissipated. 

For c < 0: 



Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and 
Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. 
Downloaded on [DD Month YYYY]. 

� 

5 Free Response 

d 
(T + V ) > 0 

dt 
Energy input (Control system providing energy) 

Solution of the Equation with Engineering Quantities 

Rewrite 
mẍ + cẋ + kx = 0 

as: 

ẍ + 2ζωnẋ + ωn
2 x = 0 (2) 

ω2 k 
= n m 

c 
ζ = 

2mωn 

ωn: Natural Frequency 
ζ: Damping Ratio 

To solve, we assume a solution of the form x = Ae(λt) 

Substitute in Equation (2): 

λ2 + 2ζωnλ + ωn 
2 = 0 

λ = −ζωn ± ωn ζ2 − 1 (3) 

When ζ2 > 1 and ζ2 < 1, the behavior is different. 

Assume c ≥ 0. (ζ ≥ 0) We have the following cases. 

Case 1: Overdamped 

ζ > 1 λ1, λ2 = Real Negative Numbers ⇒ 

“ ” 

x = A±e −ζωn±

√
ζ2 −1 → 0 as t → ∞ 

Case 2: Critically Damped 

ζ = 1 λ1, λ2⇒ = −ωn 

x = (A1 + A2t)e −ωnt → 0 as t → ∞ (4) 

Equation (4) is the fastest approach to the set point. That is why it is named 
critically damped. 



� 

� � 

� � 

6 Free Response 

Case 3: Underdamped 
0 ≤ ζ < 1


λ1, λ2 = −ζωn ± iωd


ωd = ωn 1 − ζ2 

Underdamped (Not enough damping to prevent oscillations). When ζ 0, →
ωd ωn (Natural frequency). → 

x = 
�
A1e iωdt + A2e −iωdt

� 
e −ζωnt 

Must have that A1 and A2 are complex conjugates because x is real. 

x =[A1(cos ωdt + i sin ωdt) + A2(cos ωdt − i sin ωdt)]e −ζωnt 

=[(A1 + A2) cos ωdt + i(A1 − A2) sin ωdt]e −ζωnt 

� �� � � �� � 
A3 A4 

A1 + A2 = A3 

i(A1 − A2) = A4 

A4 −ζωnt x = A3 cos ωdt + sin ωdt e 
A3 

x = A3 cos ωdt + tan φ sin ωdt e −ζωnt 

A3 
� �


x = cos ωdt cos φ + sin ωdt sin φ e −ζωnt


cos φ 

Note the trigonometric identity. 

x(t) = Ce−ζωnt cos(ωdt − φ) (5) 

e−ζωnt: Decaying in time 
cos(ωdt − φ): Oscillatory Behavior 

C and φ can be found from initial conditions. 

A3
C = (6) 

cos φ 

A4
φ = arctan (7) 

A3 
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7 Free Response 

Equations (6) and (7) relate C and φ to A3 and A4. 

But cos
1 
2 φ = 1 + tan2 φ. 

1 A4
2 

= 1 + 
cos2 φ A2

3 

1
= 

�

A2
3 + A2

4 C = 
� 

A3
2 + A2

4 cos φ A3 
⇒ 

If 0 ≤ ζ < 1, the solution will show decaying oscillations. How do we determine 
(C and φ) or (A3 and A4)? Often easier to relate A3 and A4 to initial conditions. 

Initial Conditions: x(0) = x0, ẋ(0) = v0 

x = [A3 cos ωdt + A4 sin ωdt]e −ζωnt 

At t = 0, x0 = A3 (using x(0) = x0) 

ẋ =[−A3ωd sin ωdt + A4ωd cos ωdt]e −ζωnt 

− ζωn[A3 cos ωdt + A4 sin ωdt]e −ζωnt 

At t = 0: 

v0 = A4ωd − ζωnA3 = A4ωd − ζωnx0 

v0 + ζωnx0
A4 = 

ωd 

� �2 
v0 + ζωnx0

C = x0
2 + (8) 

ωd 

v0 + ζωnx0 
tan φ = (9) 

ωdx0 

Examine solution. 

x(t) = Ce−ζωnt cos(ωdt − φ) 
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8 Free Response 

e−ζωnt: Decay 
cos(ωdt − φ): Oscillating 

Figure 7: Solution both decays and oscillates given the presence of exponential 
solution and sinusoidal solution. Figure by MIT OCW. 

Calculate Amplitude. 

x(t) e−ζωnt 
ζωnnτd= = e 

x(t + nτd) e[−ζωn(t+nτd)] 

x(t) ωn2π ωn2π 2π 
ln = nζωnτd = nζ = nζ � = nζ � (10) 

x(t + nτd) ωd ωn 1 − ζ2 1 − ζ2 

For ζ << 1: 

x(t)
ln = 2πnζ (11) 

x(t + nτd) 

Need ωn, ζ to define system. 
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9 Free Response 

Example Experiment: Flexible Rod. 

Figure 8: Flexible rod. Figure by MIT OCW. 

Measure frequency of oscillation: ωd. 
x(t)Measure amplitude over several periods to obtain x(t+nτd) . This ratio is related


to the damping ratio ζ by the equations (10) or (11) if ζ << 1.

With ωd and ζ, one can calculate the natural frequency ωn.



