Single Degree of Freedom System

2.003J/1.053J Dynamics and Control I, Spring 2007
Professor Thomas Peacock
5/2/2007

Lecture 20

Vibrations: Second Order Systems with One
Degree of Freedom, Free Response

Single Degree of Freedom System
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Figure 1: Cart attached to spring and dashpot. Figure by MIT OCW.

| mi + cit + ke = F(t) |

System response? What is z(¢)?

Use 18.03 Background.

z(t) = Free Response + Response Due to Forcing
| S —
Complementary Solution, when F(t)=0 Particular Solution

This lecture will cover the Free Response.
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Free Response 2

Free Response

Look at £k — 0
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Figure 2: Cart with dashpot only. Figure by MIT OCW.

mi+cx =0
Assume conditions z(0) = zo and #(0) = vy.
mi+cx=mv~+cv=0
v = vpe =™ already used #(0) = vo
Integrate v(t) once. Using x(0) = zg, we obtain:
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Figure 3: Solution to differential equation. Solution attenuates to a steady state
value. Figure by MIT OCW.
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Free Response 3

Figure 4: Velocity profile of solution. Velocity attenuates to zero. Figure by
MIT OCW.

No oscillations. Because k = 0, there was no restoring term.

Look at m — 0

ct+kxr=0
or
. k
T=——x
c
z(0) = zg
Therefore:
z(t) = xpe et

x(t)

Figure 5: Solution to differential equation. Position decays to zero. Figure by
MIT OCW.
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Free Response 4

N

Figure 6: Velocity profile of solution. Value attenuates to steady state value.
Figure by MIT OCW.
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No oscillations in this system.
Dashpot force balances the spring force as * — 0, spring force — 0.

Vibrations require a restoring force (e.g. spring) and inertia (e.g. mass).

Full Free Response Problem

So let us consider the full problem:

|mi +ci+ k=0 (1)

Note that ci(c > 0) is a damping term and is responsible for decay of oscillations.

Examination of Energy

d d (1 1
E(T—FV) == (§mfc2+ Ek:ﬁ): mii +krd = &(mi + kx) = @(—ci) = —ci?
For ¢ > 0:

d (r+Vv)<o

dt

Damping. Mechanical energy is dissipated.

For ¢ < 0:
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Free Response 5

d
E(T+V)>O

Energy input (Control system providing energy)

Solution of the Equation with Engineering Quantities

Rewrite
mi+ct+kxr=0

as:

&+ 20wnt + Wiz =0 (2)

wy: Natural Frequency
¢: Damping Ratio

To solve, we assume a solution of the form z = Ae(*")
Substitute in Equation (@):
N 20w A w2 =0

A= —Cw, twpy/(2—1 (3)

When ¢2 > 1 and ¢? < 1, the behavior is different.

Assume ¢ > 0. (¢ > 0) We have the following cases.

Case 1: Overdamped

¢ > 1= A1, A2 = Real Negative Numbers

T = Aie(_cw”i <2_1) —0ast— o0

Case 2: Critically Damped

Czli)\l,/\gz—wn

= (A1 + Ast)e "t — 0ast — o0 (4)

Equation (@) is the fastest approach to the set point. That is why it is named
critically damped.
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Free Response

Case 3: Underdamped

0<(<1

/\1, )\2 = —Cwn + iwd

wqg = wpy/1—(¢?

Underdamped (Not enough damping to prevent oscillations). When ¢ — 0,

wqg — wy, (Natural frequency).

T = [Aleiwdt —I—Ageiiwdt} equnt

Must have that A; and As are complex conjugates because x is real.

x =[A;(coswqt + isinwgt) + Ag(coswgt — i sinwgt)]e”cwnt
=[(A; + Ay) coswat +i(A; — Ap) sinwgt]ecwnt
———— —_———

Ag A4
AL+ Ay = A
i(A; — Ag) = Ay

A
r = Az [cos wqt + A—4 sinwgt

3

r = Az [cos wqt + tan ¢ sin wdt] e~ Cwnt

A
r =3 [cos wgt cos ¢ + sinwyt sin gb] e Swnt

Cos ¢

Note the trigonometric identity.

z(t) = Ce%“nt cos(wat — @)

e~ ¢wnrt: Decaying in time
cos(wgt — ¢): Oscillatory Behavior

C and ¢ can be found from initial conditions.

Cos ¢

¢ = arctan ﬁ—i

(7)
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Equations (@) and [@) relate C' and ¢ to Az and Ay.

But ﬁ =1+ tan? ¢.

cos?

Ly A%

cos2p A2
1 A3+ Af T
cosd 4 = C= /A5 + A]

If 0 < ¢ < 1, the solution will show decaying oscillations. How do we determine
(C and ¢) or (A3 and A4)? Often easier to relate Az and A4 to initial conditions.

Initial Conditions: x(0) = g, #(0) = vy

x = [A3 coswgt + Ay sin wdt]e_c“’”t

At t =0, 29 = Az (using x(0) = zo)

& =[—Agwa sinwat + Aswq coswgt]e” @t
— Cwn[As coswgt + Ay sinwgt]e @t
At t=0:

vo = Agwg — Cwn Az = Agwq — (wnxo

a4, = + CwnTo
wq
vo + (wn 2
C=\[|a3+ (M) (8)
wd
tan ¢ = 0T C@nTo )
wWalo

Examine solution.

z(t) = Ce%“nt cos(wat — @)
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Free Response

e~ ¢wnt: Decay
cos(wgt — ¢): Oscillating

Figure 7: Solution both decays and oscillates given the presence of exponential

solution and sinusoidal solution. Figure by MIT OCW.

Calculate Amplitude.

x(t) _ e wnt — CwnnTa
x(t +nry)  el-Swn(ttnTa)]
x(t) ] wp2m wp 27 27
n|——————|=nlw,7g =n =n =n
[$(t+an) (WnTa < Wy Cwn,/l_@ <1/1_<2

For ¢ << 1:

Need wy,, ¢ to define system.
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Example Experiment: Flexible Rod.

——

l

Figure 8: Flexible rod. Figure by MIT OCW.

Measure frequency of oscillation: wy.
z(t)

Measure amplitude over several periods to obtain GnTD) This ratio is related

to the damping ratio ¢ by the equations [[) or () if ¢ << 1.
With wgq and ¢, one can calculate the natural frequency wy,.
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