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1 Governing Equation 

2.003J/1.053J Dynamics and Control I, Spring 2007

Professor Peacock


5/7/2007


Lecture 21 

Vibrations: Second Order Systems - Forced

Response


Governing Equation


Figure 1: Cart attached to spring and dashpot subject to force, F (t). Figure 
by MIT OCW. 

mẍ + cẋ + kx = F (t) 

ẍ + 2ζωnẋ + ωn
2 x = 

F (t) 
(1) 

m 
ζ: Damping Ratio 
ωn: Natural Frequency 

Forced Response - Particular Solution xp(t) 

Can use Fourier Series or Laplace Transforms 

Start with a simple case F (t) = f =constant 
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2 Forced Response - Particular Solution xp(t) 

F (t) is constant 

The complementary solution below requires ζ < 1. 

xc = Ce−ζωnt cos(ωd − φ) 

Subscript c for complementary solution. 

xp =? 

Try x = At + B. 

2ζωnA + ωn
2 (At + B) = 

f 
m 

f fA = 0, B = 
mω2 = 

k 
n 

ωn = k 
m 

Therefore: 

f 
x = Ce−ζωnt cos(ωdt − φ) + 

k 

xc = Ce(−ζωnt) cos(ωdt − φ): unknown constants set by initial conditions 
xp = f

k : determined by forcing; independent of initial conditions 

Calculating C and φ 

f 
x(0) = C cos(−φ) + = 0 (2) 

k 

ẋ(0) = −ζωnC cos(−φ) + Cωd sin φ = 0 (3) 

The example initial conditions are x(0) = 0, ẋ(0) = 0 

Equation (3) gives tan(φ) = ζωn .
ωd 

1 ζωn 
2 ωd 

2 + ζ2ωn 
2 (1 − ζ2)ωn 

2 + ζ2ωn 
2 1 

cos2 φ 
= 1 + tan2(φ) = 1 + 

ωd 
2 = 

ωd 
2 = 

(1 − ζ2)ωn 
2 

=
1 − ζ2 

f 1 
C = − � 

k 1 − ζ2 
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3 Forced Response - Particular Solution xp(t) 

Complete Solution 

f 
� 

e−ζωnt � 

x = 1 − � cos(ωdt − φ)
k 1 − ζ2 

k = xp 

Figure 2: Solution to differential equation. Figure by MIT OCW. 

As t → ∞, x → f

What actually happens is set by ζ and ωn. 

xp can be thought of as the steady state response once the transients die down. 

So we will now focus on the steady state response. Of particular interest is the 
frequency response (i.e. response amplitude and phase as a function of forcing 
frequency. 

F (t) is a periodic function 

mẍ + cẋ + kx = F0 cos ωt (4) 

d 
(T + V ) = (mẍ + kx)ẋ = (F (t) − Cẋ)ẋ 

dt 

In steady state < F (t) · ˙ x2x >=< c ̇ >. 
xp =? Could choose sine and cosine, but use complex exponentials. Easier to 
work with phases. 

Convenient to write and solve for: 

F = Re F0e iωt

xp = Re 
� 
Xe iωt

� 
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4 Forced Response - Particular Solution xp(t) 

X is a complex number. Substitute in Equation (4). 

(−mω2 + ciω + k)Xe(iωt) = F0e
(iωt) 

F0 F0/k 
X = = � � 

k − mω2 + icω 
1 − ω2 

+ 2iζ ω 
ω2 ωnn 

X = |X|e−iφ 

|X|: Amplitude

e−iφ: In phase or out of phase?


With complex numbers, bring complex part to numerator instead of denomina­

tor. Multiply by complex conjugate.


ω2 ω 
1 − − 2iζ 

ωn 
2 ωn 

1 − ω2 
− 2iζ ω 

ω2 ωn F0 
X = |X|e−iφ = n· 

k � �2 � �2 
1 − ω2 

+ 2ζ ω 
ω2 ωnn 

xp(t) = Re Xe iωt = Re |X|e−iφ e iωt = X cos(ωt − φ) 

� �2 � �2 
1 − ω2 

+ 2ζ ω 
F0 ω2 ωnn 

X = · 
k � 

1 − ω2 
�2 

+ 
� 
2ζ ω 

�2 

ω2 ωnn 

F0 1 
X = · � 

� �2 � �2k 
1 − ω2 

+ 2ζ ω 
ω2 ωnn 
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5 Forced Response - Particular Solution xp(t) 

φ =? Ratio of real and imaginary parts. 

Figure 3: Determining φ using the real and imaginary parts of the solution. 
Figure by MIT OCW. 

This diagram corresponds to e−iφ . 

2ζ ω 

tan φ = ωn 

1 − ω2 

ω2 
n 

Analysis For ω → 0 

(Forcing Frequency → 0)

System acts as if it is at steady state.


|X| = F
k 
0 , φ = 0 or π. φ = π is not physically meaningful. 
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6 Forced Response - Particular Solution xp(t) 

Analysis For ω → ∞ 

If one forces the system too fast, system cannot respond. 
|X| → 0, limω→∞ tan φ = 0 

Figure 4: φ = π. Approaching 0 from a negative number so φ = π. System is 
completely out of phase. Cart moves in opposite direction from forcing. Figure 
by MIT OCW. 

Analysis For ω = ωn 

F0/k Xstatic 
|X| = = 

2ζ 2ζ 

Also true for ζ << 1. 

φ → π 
2 . We start at φ = 0, then we approach tan φ → ∞ so φ → π 

2 . 

(−mωn 
2 + icωn + k)Xe iωt = F0e iωt 

−mω2 + k = 0 n 

Just phase shift and damping: 

(icωn)Xe iωt = F0e iωt 

The maximum frequency response is not necessarily the natural frequency re­
sponse. To find maximum frequency response, differentiate. 

d 
�� 

ω2 �2 � 
ω 

�2 � 

1 − + 2ζ = 0 
dω ωn 

2 ωn 
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7 Forced Response - Particular Solution xp(t) 

Minimum of denominator ⇒ max|X| ⇒ ωmax = ωn 

� 
1 − 2ζ2 ≤ ωn. 0 < ζ ≤ 

√

2
2 . 

Notice ωmax is less than ωn. 

Figure 5: Summary graph of X vs. (ω/ωn) for forced response. X starts out at 
1 when (ω/ωn) equals zero, and φ equals 0. Then X goes through a maximum 
at (ωmax/ωn), which is less than 1. At (ω/ωn) equals 1, φ equals π/2, X equals 
F0/k. X continues to diminish and approaches zero for large (ω/ωn) and φ equal 
to π. The dotted line is the observed behavior when ζ = 0, which corresponds 
to no damping. Figure by MIT OCW. 


