
2.004 MODELING DYNAMICS AND CONTROL II Spring 2003 

Problem Set No. 6 

Problem 1 

Rod sliding down wall. The two ends of the rigid rod of mass M and length L are in 

contact with the floor and a vertical wall. Assuming that friction is negligible, derive the 

equation(s) governing the sliding down of the rod. 
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Figure 1: Rod slides down wall 
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Problem 2 

Unbalanced disk rolls down incline. A particle of mass m is embedded at a distance l 

from the center O of a rigid massless disk of radius r, which rolls without slipping down a 

plane inclined at an angle α with the horizontal. Derive the differential equation governing 

the generalised coordinate θ shown below. 
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Figure 2: Mass particle m embedded in massless disk 


Problem 3 

Mechanical model of tight-rope walker. Professional tight-rope walkers have learned 

how to use visual signals, and signals from the neurons in the semi-circular canals of the 

inner ear (which are sensitive to angular motion) to stabilize their precarious position by 

exerting torques on the long balancing poles which they carry. These poles are usually 

hollow tubes of bamboo with the end sections filled with lead to increase their mass and 

and moment of inertia. To obtain some insight into the sophistication of the control 

process that the tight-rope walker has taught herself, or himself, we propose to study a 

highly simplified mechanical model of the walker and her, or his, balancing pole. In this 

problem the goal is to derive the equations of motion of the unstable model. In a later 

problem set we will return to this model and design a control system which is capable of 

stabilizing the model. 

In Fig.4 we consider a simplified mechanical model which behaves somewhat like a skilled 
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tight-rope walker. The tight rope is considered to be a fixed, frictionless, pivot O about 

which the performer, modeled as a rigid body with mass m1 and moment of inertia I1 

about its center of mass C, can balance by exerting torque τ on the pole which has mass  

m2 and moment of inertia I2 about its center of mass. 

For simplicity, it is assumed that the pole is held so that the two centers of mass coincide 

in the plane of the sketch. The distance between the pivot O and the mass center C is a. 

The control system which is subsequently to be designed will apply a torque τ (t) between 

the two rigid bodies based on sensor signals that indicate the values of the angles θ(t) and 

φ(t). At this stage we simply take τ (t) to be a prescribed function of time. When τ (t) 

is positive, the torque on the rod with moment of inertia I2 is counter-clockwise and its  

equal and opposite reaction on the rigid body with moment of inertia I1 is clockwise. 

A skilled tight-rope walker is able to maintain very small fluctuations in the angles θ and 

φ throughout the performance of her, or his, act. It therefore is apppropriate to carry out 

the analysis under the small angle assumptions 

sin θ ≈ θ and cos θ ≈ 1 

(a)	 Using linearized expressions, correct to first order in the small angles θ and φ, obtain 

the displacement and velocity components of the point C. 

(b) Draw clear free-body diagrams of the rigid body representing the performer, and the 
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rigid body representing the balance pole, showing all forces acting on each body. 

(c)	 Use the linear momentum equations to evaluate each reaction-force component in 

terms of operations on the angles. 

(d) Apply angular momentum principles to obtain equations of motion for θ(t) and φ(t). 

4



