
------------------

%Lab 2, Part A


%first, condition the data from Lab 1 again

load(’drop_data.mat’)

d=(d1+d2+d4+d5)/4;

s=min(d);

d=d-s+.1;


%now make a sine wave for other test

t=linspace(0,6*pi,500);	 %another way to create a vector. this


%one has 500 points, whereas the

%t=[0:.1:6*pi] method creates an array with

%points that are separated by .1 intervals


g=sin(t);


%part a) First Derivative

[dt,dg] = derivative(t,g);

[dTime,dv] = derivative(Time,d);


%part b) Second Derivative

[ddt,ddg] = derivative(dt,dg);

[ddTime,da] = derivative(dTime,dv);


figure(1)

subplot(3,1,1)

plot(t,g), title(’Sine Wave’),xlabel(’t’),ylabel(’sin(t)’)

subplot(3,1,2)

plot(dt,dg),title(’1st Derivative of Sine Wave’),xlabel(’t’),


ylabel(’cos(t)’)

subplot(3,1,3)

plot(ddt,ddg),title(’2nd Derivative of Sine Wave’),xlabel(’t’),


ylabel(’-sin(t)’)


figure(2)

subplot(3,1,1)

plot(Time,d),title(’Averaged, Normalized Ball-Drop Data’),


xlabel(’time’),ylabel(’height’)

subplot(3,1,2)

plot(dTime,dv),title(’Velocity of Ball-Drop Data’),


xlabel(’time’),ylabel(’height’)

subplot(3,1,3)

plot(ddTime,da),title(’Acceleration of Ball-Drop Data’),


xlabel(’time’),ylabel(’height’)


function [dervx, dervy] = derivative(x,y)


dervy = diff(y)./diff(x); %could have also used a for loop here.

dervy = dervy’; %matrix gets tranposed for some reason.


dervx = x(2:length(x)); %shorten x vector accordingly

dervx = dervx’;


>> lab2 







Part B 

This part was also supposed to be related to a bouncing ball, but the way that the equation 
was given, it wasn’t immediately obvious to show how to plot such a trajectory, showing 
when and where the ball hit the floor. It is perfectly all right to have plotted the parabolic 
trajectory that went down to -2000, like somebody falling off of a cliff or something, but 
here is an m-file which calculates the position and velocity and includes bouncing, and a 
coefficient of restitution equal to 0.8, as used later in the problem. 

function [z,v,impact] = drop(z0,v0,tf)


g=-9.8;

e=0.8;

t=[0:0.01:tf];


t0=0;

j=0;

for i=1:length(t)


z(i) = 0.5*g*(t(i)-t0)^2 + v0*(t(i)-t0) + z0;

v(i) = g*(t(i)-t0) + v0;


if z(i) < 0 %when the ball goes below floor level,

j = j+1; %reverse the sign of the velocity and

v0 = -e*v(i); %reduce the velocity by the coefficient of

z0 = 0; %restitution. add the impact times to a vector.

t0 = t(i); %t0 is now the last impact time.

impact(j) = t(i);


end

end


plot(t,z,t,v),title(‘Ball Drop’),xlabel(‘t’),ylabel(‘height/velocity’)


>> [z,v,im] = drop(10,0,20); 



>> im(1:10)’ 

ans = 

1.4300 
3.7200 
5.5600 
7.0400 
8.2300 
9.1900 
9.9700 

10.6100 
11.1300 
11.5500 

now I just found my first 10 approximations for the impact time. This comes in handy 
now for parts B3 and beyond. 

B3) the first collision time is guessed at 1.43. at this time, the ball bouncces back up 
from the floor. Now, I shall use the fzero function to find t1 more precisely. It should 
work with a function filename as argument, but here we will just have to input the 
dynamics as an inline function. 

>> fzero(inline(’-.5*9.8*t.^2+10’),1.43) 

ans = 

1.4286 

B4) the velocity at t1=1.4286 is -9.8*1.4286 = -14m/s. 

B5) the coefficient of restitution makes the outgoing velocity = 14*.8 = 11.2m/s. this 
can be seen on the plot above, as well. 

B6) running the program again with the new initial conditions of z0 = 0 and v0 = 11.2, 
we find that the next impact time is at 3.7186 sec, as predicted before. 

>> [z,v,im]=drop(0,11.2,20); 
>> im(1)+1.4286 

ans = 

3.7186 



and then done properly, 
>> fzero(inline(’-.5*9.8*t.^2+11.2*t’),2.3) 

ans = 

2.2857 

>> ans+1.4286 

ans = 

3.7143 

the velocity at this time is -9.8*2.2857 + 11.2 = -11.1999 m/s. good to see that energy 
was conserved….. after the rebound, v = 0.8*11.2 = 8.96 m/s. and so on, through all of 
the bounces. Ta-da, we’re done. Por fin, gracias a Dios. 


