
2.004: MODELING, DYNAMICS, & CONTROL II 
Spring Term 2003 

PLEASE ALSO NOTE THAT ALL PRELAB EXERCISES ARE DUE AT THE START 
(WITHIN 10 MINUTES) OF THE LAB SESSION, NO LATE WORK IS ACCEPTED. 

Pre-Lab Exercise for Experiment 3 

(1) Symmetric Motion 

(a) Consider a rod pendulum with length b, mass m, suspended by two tethers with length 
L as shown above. The tethers are separated by distance, a, at the support surface and at 
the rod. Write down the equation of motion for the center of mass of the rod and deduce 
its natural oscillation frequency in the absence of loss mechanisms. You may neglect the 
mass of the tethers. 

As long as the tethers are of equal length, equal spacing at top and bottom, and is 
centered about the center of mass, we can treat this system as all the mass of the rod 
concentrated at its center of mass on a single tether, or like the problem above. 

ω = n Lg 

This can be proven as follows: 

ΣFr = Tleft + Tright – mg cosθ; 

ΣFθ = mg sinθ 



about the center of mass of the bar: 
&&Στ = -Tleft*a/2 + Tright*a/2 = I*θCM  = 0 

(no rotation of bar about its CM due to geometric constraints of four-bar 
mechanism.) 

Force in the radial direction: 

&2 &2-T + mg cosθ  = mar = m( L&& – Lθ ) = -m Lθ , 
since L&& = 0 

In the tangential direction: 

& &-mg sinθ = maθ = m(2 Lθ + 
since L& = 0 

&&so Lθ  = -g sinθ; 

&&for small θ, sinθ ≈ θ => Lθ  = -gθ; 

Take the Fourier transform and compare 
to the general second-order equation, 

s2 + g/L = 0 Ù  s2 + 2ξω n s + ω n 
2 = 0 

=> ω n 
2 = g/L, or ω n = L g 

Can also look at this problem from the torque about the pivot point: 

&&-mg sinθ * L = I*θ where I of a point mass at distance I = m*L2 

&&then θ  + g(θ /L) = 0 again. 

&& &&Lθ ) = m Lθ , 



(b) Write an equation describing the trajectory of the center of mass as a function of 
time. 

θ(t) = θmax cos(ω n t + φ) and we know that ω n = L g from before, so 

θ(t) = θmax cos( L g t + φ) 

x(t) = L sinθ(t) 
y(t) = -L cosθ(t) 

now you have x and y as a function of time. 

(c) From the solution in part (b), write an equation describing the trajectories of one end 
of the rod (please pick any one of the ends). 

I picked the left end: 

x(t) = L sinθ(t) - b/2 
y(t) = -L cosθ(t) 

where θ(t) is as defined above in part (b) 



(2) Asymmetric Pendulum 

P3 b P4 

L L 

P1 P2 a 

(a) Consider a rod pendulum with mass m, suspended by two tethers with length L as 
shown above. The tethers are separated by a distance b at the support surface and 
separated by distance a at the rod. You may neglect the mass of the tethers. Explain why 
this system has only one degree of freedom. 

This planar system has three degrees of freedom (x,y,θ), but the pin joints constrain 
motion in the x and y directions. This leaves only θ at each joint, and since all four joints 
are connected in a closed loop, one measured θ describes the motion of all bodies in the 
system. 



(b) Since this system has only one degree of freedom, its kinematics can be described by 
one generalized coordinate. We can simplify the representation of the geometry of the 
system at a particular configuration as follows: 

θ1 θ2 

θ 

Choose θ1 as the generalized coordinate, express the relationship between θ , θ1, θ2 . 

L cosθ1 + a cosθ + L cosθ2 = b; 

and 

L sinθ1 – a sinθ = L sinθ2; 



(c) At resting configuration, the values of θ1 and θ2 are equal by symmetry (why?) and 
we will designate the equilibrium values of the angles θ1 and θ2 as θ0. Express θ0 your 
result in terms of a, b, and L. Redraw the figure at equilibrium. 

At rest, θ1 is equal to θ2 because it is assumed that distances a and b are centered about 
the center of mass of the rod, ∴the bar is parallel to the suspension surface when at rest, 
so that there is no net torque on the bar. 

From part (b), 
L sinθ1 – a sinθ = L sinθ2 

θ =0 because θ1 = θ2 = θo 

L cosθ1 + a cosθ + L cosθ2 = b 

L cosθo  + a  + L cosθo = b 

L cosθo = b/2 – a/2; 

θo = cos-1( b − a );
2L 

b 

θ0 θ0 

L L 

a 



(d) Consider small perturbation of this pendulum from its equilibrium position such that: 

θ1 = θ0 + ∆θ1 

θ2 = θ0 − ∆θ2 

where ∆θ1 , ∆θ2  are assumed to be small. Further, you are given the Taylor 
expansions: 

sin(θ0 ± ∆θi ) = sinθ0 ± ∆θi cosθ0 
cos(θ0 ± ∆θi ) = cosθ0 m ∆θi sinθ0 

Verify that ∆θ1 and ∆θ2  are equal? 

In addition, we should define θ first. 
θ =0 + ∆θ  = ∆θ 

From 
L cosθ1 + a cosθ + L cosθ2 = b 

L cos(θo + ∆θ1) + a cosθ + L cos(θo – ∆θ2) = b 

L (cosθo - ∆θ1 sinθo) + a cos∆θ + L (cosθo + ∆θ2 sinθo) = b 

2L cosθo + a + L sinθo (∆θ2 – ∆θ1) = b 

but 2L cosθo + a = b by symmetry, as shown in part c) 

L sinθo (∆θ2 – ∆θ1) = 0 

∆θ2 - ∆θ1 = 0 

∆θ2 = ∆θ1 

ta-da. 

Additionally, 
L sinθ1 – a sinθ = L sinθ2 ; 
L sin(θo + ∆θ1) – a sin∆θ = L sin(θo – ∆θ2) ; 
L (sinθo + ∆θ1 cosθo) – a∆θ  = L (sinθo – ∆θ2 cosθo) ; 
∆θ=( 2L/a)cosθo∆θ1 since ∆θ2 = ∆θ1 



x

(e) In reference to the center of mass, write the force and moment balance equations in 
terms of ∆θ1. 
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For small motion, 
θ1 = θ0 + ∆θ1 

θ2 = θ0 –∆θ2 

θ = ∆θ 

From the force balance equations, 

ΣFx: -T1 cos θ1 + T2 cosθ2 = max; 
ΣFy: T1 sin θ1 + T2 sinθ2 – mg = may ; 

&&ΣMCM: -T1(a/2)sin(θ1+θ ) + T2(a/2)sin(θ2-θ ) = Iθ

By the geometry, 

x = L cosθ1 + a/2 cosθ; 
y = -L sinθ1 + a/2 sinθ 

&2 && 
1 ) – a/2 (cosθ θ 2 && ),ax = &&  = -L(cosθ1 θ1  + sinθ1 θ & + sinθ θ 

ay = &y&  = L(sinθ1 θ1  – cosθ1 θ & 2 && )& 2 && 
1 ) – a/2 (sinθ θ – cosθ θ 

At the geometrical constraint in (b), 

L sinθ1 – a sinθ = L sinθ2, 

L sin(θ0 + ∆θ1) – a sin∆θ = L sin(θ0 –∆θ2), 

L (sinθ0 + ∆θ1cosθ0) – a∆θ = L(sinθ0 –∆θ2cosθ0), 

L (∆θ1+∆θ2)cosθ0 = a∆θ, 

∆θ = 2(L/a)cosθ0∆θ1


Force balance equations are expressed in terms of ∆θ1 by replacing ∆θ with ∆θ1. 



(f) Simply if the equations of motion as a function of ∆θ1 . Express the natural 
frequency of this pendulum in terms of the gravitation constant g, and geometric 
constants a, b, and L. 

From g), 

T1 = m 
− ax sinθ 2 + (a y + g )cosθ 2 

sinθ1 cosθ 2 + sinθ 2 cosθ1 

T2 = m 
ax sinθ1 + (a y + g )cosθ1 

sinθ1 cosθ 2 + sinθ 2 cosθ1 

ax sinθ2 − (ay + g )cosθ2 ax sinθ1 + (ay + g )cosθ1 2I && 
sinθ1 cosθ2 + sinθ2 cosθ1 

sin(θ1 +θ )+ 
sinθ1 cosθ2 + sinθ2 cosθ1 

sin(θ2 −θ ) = 
ma 

θ

Based on the small angle approximations 

&&ax sinθ2 sin(θ1 +θ ) ≈ −L sin3θ0∆θ1 

&&ax sinθ1 sin(θ2 −θ ) ≈ −L sin3θ0∆θ1 

&& &&ay cosθ2 sin(θ1 +θ ) ≈ −L cos2θ0∆θ1 + 
a 
2

sinθ0 cosθ0∆θ 

&& &&ay cosθ1 sin(θ2 −θ ) ≈ −L cos2θ0∆θ1 + 
a 
2

sinθ0 cosθ0∆θ 

g cosθ2 sin(θ1 +θ ) ≈ g[(∆θ1 + ∆θ )cos2 θ0 + ∆θ2 sin2 θ0 ]= g[∆θ1 + ∆θ cos2θ0 ] 
g cosθ1 sin(θ2 −θ ) ≈ g[− (∆θ2 + ∆θ )cos2θ0 − ∆θ1 sin2 θ0 ]= −g[∆θ1 + ∆θ cos2θ0 ] 
&& &&θ (sinθ1 cosθ2 + sinθ2 cosθ1 ) ≈ 2sinθ0 cosθ0∆θ

Plug-in the above approximations into the moment balance equation, 

&& &&− 2L sin3θ0∆θ1 − 2g(∆θ1 + ∆θ cos2 θ0 ) = 
4I sinθ0 cosθ0∆θ 
ma 

&&By using the results in (d) in order to eliminate ∆θ , 

 &&
 L sin3θ0 + 
4IL 

2 sinθ0 cos2 θ0 
∆θ1 + g

1+ 
2L cos3θ0 

∆θ1 = 0

 ma   a  

&&L sinθ0 (ma2 sin 2 θ0 + 4I cos2 θ0 )∆θ1 + gma(a + 2L cos3θ0 )∆θ1 = 0



Therefore, the natural frequency for the rod pendulum
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I = ma2/12 

Æ ω = n 
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yay. 

NOTE: In the experiment, moment of inertia for the rod pendulum is I = ma0 
2/12, 

not I = ma2/12 where a0 is length of rod pendulum. (Actually, it has fixed length 
in the experiment.) Therefore, the natural frequency for rod pendulum in the 
experiment will be as below: 
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