MIT OpenCourseWare http://ocw.mit.edu

2.007 Design and Manufacturing I Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Sketching and Drawings

2.007 Spring 2009 Prof. David Gossard

Lecture topics (tentative)

Sketching & Drawings
Modeling basic components 1
Modeling basic components 2
Making drawings
Assemblies
Case studies

CAD

Enable you to

- Communicate ideas about physical objects in isometric sketches
- Understand and create working drawings
- Create CAD models (parts, drawings, assemblies)

Caveats:

- These lectures are only a start, i.e. the basics
- Mastery requires practice and time

Reminder

To those who've "seen it before":

• Bear with us

• Help those who haven't

Terminology

Sketch • Rough, approximate Communicates general shape & proportion • Quick, cheap Produced by hand or with simple tools

Courtesy of Martin Culpepper. Used with permission.

Terminology

Drawing Precise, complete • Sufficient to enable fabrication or assembly • Not quick, not cheap • Produced with tools, esp. computers

Courtesy of Sang-Gook Kim and Jung-Hoon Kim. Used with permission.

Isometric Sketching

□ 3 axes • 1 vertical • 2 inclined 30° wrt to horizontal Lines parallel to axes are true length Used to establish scale

Not true length

Courtesy of Julie Arnold. Used with permission.

Exercise 1

(signal when done...)

Make an isometric sketch (twice) of:
 a 6-inch long "2x4", half-scale, lying flat

• Long axis up & to the right

• Long axis up & to the left

Sketching circles

Normal: Circle
Bounding square
Tangency at midpoints
Proportion at mid-arc Diagonals? (optional)

Sketching isometric circles

- Isometric: Ellipse
 - Bounding rhombus
 - Tangency at midpoints
 - Proportion at major & minor axes
- Sketching circles on principal planes
 Ellipses in different orientations
 Cube, tangent points, curves

Sketching isometric cylinders

Tangent lines

- normal to plane of ellipse
- leave from ellipse's <u>major axis</u>, NOT from tangency points !

Rookie error

Exercise 2

Sketch a block letter "L" • 1 x 1 base • 1.5 height 0.25 thickness • Sketch fillets on the 4 shortest edges (0.25 radius)Sketch a hole through the vertical face (0.5 diameter)

PRACTICE !!!

Drawings

Are a <u>special language</u> for communicating about physical objects

- Reading
- Writing
- Can be a legal definition
- 3+ types of information:
 - Shape
 - Nominal dimensions
 - Tolerances
 - Other attributes (e.g. finish)

Orthographic Projection

- Outline of 3D object projected onto 2D plane
 - Transparent plane in front of the 3D object
- Important points <u>projected</u> onto plane and connected
 normal to plane
 One "view" of the object (planar)

Image from Wikimedia Commons, http://commons.wikimedia.org

Principal Views

- Glass Box" organization
- Multiple planes give multiple views
 Views are aligned

Principal Views (2D)

6 principal viewsViews are aligned

Image removed due to copyright restrictions. Please see http://commons.wikimedia.org/wiki/File:First_angle_projecting.png http://commons.wikimedia.org/wiki/File:First_angle_unfolding.png http://commons.wikimedia.org/wiki/File:First_angle_unfolded.png

View Selection

Non-symmetric parts:
 Front, side, top
 Front = largest

Axially symmetric parts often need only 2 views

Courtesy of Sang-Gook Kim and Jung-Hoon Kim. Used with permission.

Interpreting Lines

- Lines (solid or dashed) can mean
 - Edge view of surface
 - Intersection of two surfaces
 - Surface limit
- Dashed lines means lines "hidden" in current view

Centerlines are special, have their own symbol

Image from Wikimedia Commons, http://commons.wikimedia.org

Exercise 3

 Make an isometric sketch of the object depicted in the following orthographic projections

Тор

Courtesy of Martin Culpepper. Used with permission.

Sections

A cut-away view to reveal detail

- An imaginary plane (section plane) cuts the object
- Cut material is cross-hatched
- Section plane is identified
 - Heavy dashed line
 - Arrows
 - Letters

Image from Wikimedia Commons, http://commons.wikimedia.org

Section Views ("Sections")

Objectives:
Eliminate confusion
Aid "readability"

Image from Wikimedia Commons, http://commons.wikimedia.org

Sections

Section plane may "jog" to show features of interest

Partial Sections

Removed section

Rotated section

Figure by MIT OpenCourseWare.

Section View Conventions

Show all visible edges

Courtesy of Martin Culpepper. Used with permission.

Don't cross-hatch ribs

A is correct

B is preferred

Ribs in section. Ribs are treated as though the cutting plane were in front of them, to avoid misreading the section as a solid.

Figure by MIT OpenCourseWare.

Sketch (the) three principal views of the following object

END

