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2.00AJ/16.00AJ Reading for Lecture #4 

2.00AJ/16.00AJ Reading: 

Hydrostatic Pressure Effects and Archimedes’ Principle


Prof. A.H. Techet 

Pressure Effects 

I. Hydrostatic Pressure 

Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, 
fluid acceleration, or other body forces. For now, let us consider a fluid in static 
equilibrium – with no velocity gradients (thus no viscous stresses). 

Forces are then due only to: 

1. Pressure acting on the fluid volume 

2. Gravity acting on the mass of the fluid 

3. External body forces 

Using standard conventions we will consider pressure to be positive for compression. 
Recall that we said pressure is isotropic: Consider a triangular volume of fluid with 
height, dz, length, dx, and unit width, b, into the page: 

Figure 2.1: Elemental fluid volume 
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The fluid element can support no shear while at rest (by our definition of a fluid). Thus 
the sum of the forces on the triangle, in the x- and z- directions, MUST equal zero: 
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We can simplify the above equations using simple geometry: 

!z = (!s)sin" and !x = (!s)cos" , (2.3) 

such that 
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Taking the limit as ∆x, ∆z goes to zero (i.e. the triangle goes to a point), we see that 

p
x
= p

z
= p

n
= p . (2.6)


Since θ is arbitrary, pressure at a point in a fluid is independent of orientation and is thus 
isotropic. Pressure (or any stress for that matter) causes NO net force on a fluid element 
unless it varies spatially! 
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Take for example a small fluid element, δx, δy, δz: 

Figure 2.2: Fluid Element Volume (z is positive upwards by convention). 

We will continue to assume that the only forces are due to gravity and pressure gradients. 
Let’s start by looking at the pressure acting on the top and bottom of the element volume. 
Using Taylor’s series expansion: 

ptop = po +
!z
2

dp

dz
0

+
1

2!

!z
2

"
#$

%
&'
2

d
2
p

dz
2

0

( ... (2.7)


Second term is positive b/c we are taking z positive upwards from the center of the 
element. 
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Taking the limit as δz goes to zero we are able to ignore the higher order terms and keep 
only up to second order. The resultant force due to pressure on the face is 

  
F

press.
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Fpress acts in the positive z-direction opposite to gravity. In summing the pressures acting 
on the top and bottom we see that the second order terms cancel exactly and we are left 
with the resulting force due to pressure. 

Acting in tandem to the pressure force is the force due to gravity. The fluid density and 
volume dictate the mass of the element (F=mg). 
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Using Taylor’s series expansion similar to the pressure terms above we get: 

!top + !bot = 2!o (2.13)


For static equilibrium, pressure forces MUST balance gravitational/body forces: 

Fweight + Fpress = 0

dp

dz o

(dxdydz) = !"g(dxdydz)

(2.14)


(2.15)


We can drop the subscript “o” from the pressure gradient term since we have taken the 
limit to a small element of fluid. This equation is valid at any point in the fluid. 
Canceling the elemental volume terms we are left with the hydrostatic equation. 

Hydrostatic Equation: 
dp

dz
= !"g (2.16) 

The negative sign is valid here since the z-direction is taken positive pointing up, in the 
opposite direction to the gravitational force. If z-direction coincided with gravity then the 
negative sign would be dropped. 

In this case, there are no acting forces or pressure changes in the x- or y-directions 
therefore dp/dz is representative of the pressure gradient: 

dp

dz
= !p . (2.17)
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We can rewrite the hydrostatic equation as: 

 

!

!p = "#
!
g (2.18)


If there were additional gradients in the x- and y-directions similar steps could be 
followed and the resulting equation would be similar. Pressure gradient is always 
balanced by gravity, acceleration, viscous forces, and any other external body forces. 

II. Gauge and Vacuum Pressure 

Pressure is usually referred to in one of two ways: 

1) Absolute, or total, pressure 

2) Relative to ambient (atmospheric) pressure 

Since most pressure instruments are differential measurement devices, meaning they 
measure the pressure in the fluid relative to atmospheric pressure, absolute pressure is a 
commonly used quantity. 

Pressure is either greater or less than the ambient (atmospheric) pressure: 

1) p > pa Gage Pressure p(gage) = p – pa 

2) p < pa Vacuum pressure p(vacuum) = pa – p 

In order to get the total (absolute) pressure, the atmospheric pressure must be known. 
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tension 

Figure 2.3: Relative pressure chart 

III. Hydrostatic Forces on a Wall 

Recall the equation for the pressure gradient in a liquid is 
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Which, in the vertical direction this translates to 

dp

dz
= !"g , (2.20)


or 
dp = !"g dz . (2.21)


Integrating in the z-direction we get pressure as a function of depth: 
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Note that pressure increases with depth with a constant slope, 
 !g . Pressure is either 

considered relative to a reference pressure or in absolute terms. Most pressure gauges 
are differential measurement devices that measure pressure relative to ambient (or 
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atmospheric) pressure. Thus it is important to keep in mind the effects due to 
atmospheric pressure in your laboratories and calculations. 

Pressure is isotropic, and therefore pressure is the same on a vertical or horizontal surface 
at depth h. Take for instance the ocean bottom and a vertical seawall that extends to the 
bottom. At depth H, the horizontal pressure acting on the wall is equivalent to that 
pressure acting along the entire seafloor at that same depth. 

Horizontal Force acting on a vertical surface: 

Figure 2.4: Absolute Pressure vs. Gauge pressure 

Using absolute pressure formulation we can find the force on the wall from the pressure 
as a function of depth: 

p ! pa = !"g z ! h( ) (2.24)


Thus the elemental force acting in the x-direction due to the pressure is 

dFx = pdA = pwdz , (2.25)


where w is the width of the wall into the page. 

To determine the force on the wall we must consider the pressure acting on both sides of 
the wall. Let’s assume that on the left of the wall water of depth, h, is exerting force F1 on 
the wall. The right side of the wall is open to the air with atmospheric pressure acting 
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over the height of the wall. Under this setup we must account for the atmospheric 
pressure on both sides of the wall. The elemental force in the x-direction at some depth z 
below the free surface is formulated on the left and right sides of the wall to determine 
the total force acting on the wall: 

Left: 

Right: 

Total force: 

dFx1 = (Pa + !g(h " z))wdz

dF
x2
= !P

a
wdz

dFx = dFx1 + dFx2 = Pawdz + !g(h " z)wdz " Pa wdz

The two underlined terms cancel and we are left only with the effect due to the presence 
of the water. Integrating the pressure over the depth 

F = !g(h " z)dz = 1
2!gwh

2

0

h

# (2.26)


If use gauge pressure to calculate the force on the wall, we already take into account the 
effect of atmospheric pressure and can directly calculate the force from: 

pg = !g(h " z) (gauge pressure) 

dF = pgdA = !g(h " z)w dz

(2.27)


(2.28)


Resulting in the same force found when we used absolute pressure. 

The force acting on the wall is a “distributed load” which acts along the entire depth of 
the wall. 

However it is possible to determine how this force “acts” on the wall using a simple 
moment balance: 

dMo = z ! dF (2.29)


where Mo is the moment on the wall about the origin (for now lets consider the origin the 
bottom of the wall) and z is the moment arm perpendicular to the force direction. 
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Figure 2.5: Moment balance on the wall about the origin o with z taken positive from the 
ground up. 

The elemental moment about the origin due to the hydrostatic pressure is: 

dMo = !g(h " z)w z dz (2.30)


Integrating leads to the total moment about the origin: 

Mo = 1
6!gwh

3 (2.31)


By definition the product of the force F times the moment arm z must equal the moment 
M: 

M = F z (2.32)


Such that the point at which the force acts on the wall is z : 

z =
1
6!gwh

3

1
2!gwh

2
= 1
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Figure 2.6: The point at which the resultant force acts is known as the center of pressure. 

We can use a similar approach to the problem of pressure on a sloped wall. This is left for 
a homework exercise. Since atmospheric pressure acts everywhere then gage pressure is 
the ideal pressure to use in these exercises. The resultant forces and moments on the 
sloped wall can be found using simple geometry and then extended to the case of a “V”-
shaped ship hull. 

Figure 2.7: V-shaped Hull 
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Archimedes’s Principle and Static Stability for Floating Vessels 

IV. Archimedes’s Principle: 

The force on a body due to pressure alone (in the absence of viscous forces) acts in 
the normal direction (recall pressure is isotropic!). The force can be calculated by 
integrating the pressure around the body: 

!!=

S

dsnpF ˆ
!

where pressure is a function of depth below the free surface. Hydrostatic pressure is 
found using the equation: gzzp !"=)( . Thus the force due to pressure can be 
simplified as follows: 
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By calculus, the surface integral can be converted into a volume integral: 
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We can see now that the buoyancy force acts to counterbalance the displaced volume 
( � ) of fluid. For a semi-submerged body (partially submerged) the area of the 
water plane must be accounted for in the integration. 

V. Moment on a body (Ideal Fluid) 

The moment on a submerged body follows directly from structural mechanics or 
dynamics methodologies. 
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Recall from vector calculus: 
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So we get the moments as follows: 

!! "=

s

dsnznypM )( 231 about the x-axis 

We can also calculate in a similar fashion: M2 about the y-axis and M3 about the z-
axis. 

VI. Center of Buoyancy 

Calculating the Center of buoyancy, it is first necessary to find the center of area. 

Area: != dxyA
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When calculating a ships area, an approximate area is used since there is often no 
mathematical formula for the ships geometry. 

First moment of the area is found as follows: 

!= dxxyM yy 1

!= dyyxM xx 1

The coordinates for the center of area are then found using the above equations: 
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yy
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1
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M
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1

Center of buoyancy is the point at which the buoyancy force acts on the body 
and is equivalently the geometric center of the submerged portion of the hull. 

VII. Static Equilibrium: Gravity and buoyancy balance 

A body at rest is considered to be in equilibrium. 

The mass of the object (vessel) is equal to the mass of an equivalent volume of water 
(displacement). When a vessel is in static equilibrium, the center of gravity and 
buoyancy act on the same vertical line. Buoyancy acts perpendicular to the water line 
(upwards) at the center of buoyancy. 

Center of gravity usually lies amidships and near to the water line. 

Center of buoyancy changes dependant on the volume of the submerged portion of 
the vessel. As a ship rolls, pitches, etc. the center of buoyancy moves according to 
the “new” shape of the submerged block. Take for example a container ship: as 
containers are loaded the weight of the ship increases and it submerges further into 
the water. With the increased draft the center of buoyancy shifts. 

A vessel in static equilibrium with the centers of gravity 
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and buoyancy aligned in the same vertical line. 

VIII. Righting moments: The moment required/available to right a vessel. 

An object disturbed from a static position that returns to its original position is 
considered statically stable or in static equilibrium. Such vessels are “self-righting”. 
However if the vessel is unable to return to its equilibrium position and continues to 
turn over (capsize) it is considered unstable. It a vessel is in equilibrium at any 
position then it is neutrally stable (take for example a simple cylinder on its side – 
turn it to any angle and it will stay). 

A statically stable vessel with a positive righting arm. 

Statically unstable vessel with a negative righting arm. 

The righting moment is equivalent to the Displacement of the vessel times the 
righting arm: 

ZG W x  RM =
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IX.	 Small rotation about the y-axis equation for stability: 

Sum of the torques about the center of rotation must be zero (conservation of angular 
momentum!) 

We can write the equation of motion in terms of the rotational displacement, θ, and 
rotational acceleration, !!! : 

0I l! !+ =!!

where l = |GB|. This is the equation of simple harmonic motion. The motion is in 
stable equilibrium when l >0 and unstable when l < 0. (You’ll see this later in 
dynamics class!) 

X.	 Metacenter: A ships metacenter is the intersection of two lines of action of 
the buoyancy force. 

What does this mean? Well, basically it means that as a ship rolls (heels) through an 
angle, θ, the center of buoyancy, B, shifts along a semi-elliptical path (depending on 
geometry). Since the buoyancy always acts vertically, the two lines of action for two 
different heel angles must cross at a point. This point is the metacenter of the ship, 
denoted by M in the figure below. 
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The metacenter is the intersection of two distinct lines of 
action of the buoyancy force. 

When on at an angle of roll (heel) the center of buoyancy and center of gravity no 
longer act on the same vertical line of action. 

Transverse Metacenter: Roll/Heel 
Longitudinal Metacenter: Pitch/Trim 

The concept of the metacenter is only really valid for small angles of motion. 

Metacentric height is the distance measured from the metacenter to the center of 
GMgravity, . If the metacentric height is large, then the vessel is considered to be 

“stiff” in roll – indicating that there will be a large righting moment as a result of 
small roll angles. In contrast, if the metacentric height is small then the ship rolls 
slowly due to a smaller righting arm. 
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