
8 STOCHASTIC SIMULATION 59

8 STOCHASTIC SIMULATION

Whereas in optimization we seek a set of parameters �x to minimize a cost, or to maximize a
reward function J(�x), here we pose a related but different question. Given a system S, it is
desired to understand how variations in the defining parameters �x lead to variations in the
system output. We will focus on the case where �x is a set of random variables, that can be
considered unchanging - they are static. In the context of robotic systems, these unknown
parameters could be masses, stiffness, or geometric attributes. How does the system behavior
depend on variations in these physical parameters? Such a calculation is immensely useful
because real systems have to be robust against modeling errors.

At the core of this question, the random parameters xi in our discussion are described by
distributions; for example each could have a pdf p(xi). If the variable is known to be normal
or uniformly distributed, then of course it suffices to specify the mean and variance, but in
the general case, more information may be needed.

8.1 Monte Carlo Simulation

Suppose that we make N simulations, each time drawing the needed random parameters
xi from a random number ”black box” (about which we will give more details in the next
section). We define the high-level output of our system S to be g(�x). For simplicity, we
will say that g(�x) is a scalar. g(�x) can be virtually any output of interest, for example: the
value of one state at a given time after an impulsive input, or the integral over time of the
trajectory of one of the outputs, with a given input. In what follows, will drop the vector
notation on x for clarity.

Let the estimator G of g(x) be defined as

1 N

G =
�

g(xj).
N j=1

You recognize this as a straight average. Indeed, taking the expectation on both sides,

1 N

E(G) =
�

E(g(xj)),
N j=1

it is clear that E(G) = E(g). At the same time, however, we do not know E(g); we calculate
G understanding that with a very large number of trials, G should approach E(g). Now
let’s look at the variance of the estimator. This conceptually results from an infinite number
of estimator trials, each one of which involves N evaluations of g according to the above
definition. It is important to keep in mind that such a variance involves samples of the
estimator (each involving N evaluations) - not the underlying function g(x). We have

�

�

8 STOCHASTIC SIMULATION 60

σ2(G) = σ2

⎡
⎣

⎤
⎦

N

N

�

j=1

N�

1

g(xj)

⎡
⎣

⎤
⎦ 1

σ2 g(xj)=
N2

j=1

N�

j=1

1

=

N2
σ2(g)

1
= σ2(g).

N

This relation is key. The first equality follows from the fact that σ2(nx) = n2σ2(x), if n is
a constant. The second equality is true because σ2(x + y) = σ2(x) + σ2(y), where x and y
are random variables. The major result is that σ2(G) = σ2(g) if only one-sample trials are
considered, but that σ2(G) 0 as N → ∞. Hence with a large enough N , we can indeed →
expect that our G will be very close to E(g).

Let us take this a bit further, to get an explicit estimate for the error in G as we go to large
N . Define a nondimensional estimator error

G − E(g)
q =

σ(G)

(G − E(g))
√

N
= ,

σ(g)

where the second equality comes from the result above. We call the factor σ(g)/
√

N the
standard error. Invoking the central limit theorem, which guarantees that the distribution
of G becomes Gaussian for large enough N , we have

b 1
e−t2/2dtlim prob(a < q < b)

N →∞
=

a
√

2π
= F (a) − F (b),

where F (x) is the cumulative probability function of the standard Gaussian variable:

a 1
e−t2/2dtF (a) =
 √

2π−∞

Looking up some values for F (x), we see that the nondimensional error is less than one in
68.3% of trials; it is less than two in 95.4% of trials, and less than three in 99.7% of trials.
The 99.7% confidence interval corresponds with

−3 ≤ (G − E(g))
√

N/σ(g) ≤ 3 →

−3σ(g)/
√

N ≤ G − E(g) ≤ 3σ(g)/
√

N.

8 STOCHASTIC SIMULATION 61

In general, quadrupling the number of trials improves the error by a factor of two.

So far we have been describing a single estimator G, which recovers the mean. The mean,
however, is in fact an integral over the random domain:

E(g) =
∫

p(x)g(x)dx,
xεX

where p(x) is the pdf of random variable x. So the Monte Carlo estimator G is in fact an
integrator:

G '
∫

p(x)g(x)dx.
xεX

We can just as easily define estimators of statistical moments:

1
Gn =

N

xng(x n
j) x p(x)g(x)dx,

N j '
∫

x Xj

∑

=1 ∃

which will follow the same basic convergence trends of the mean estimator G. These moments
can be calculated all using the same N evaluations of g(x).

The above equation gives another point of view to understand how the Monte Carlo approach
works: the effect of the probability density function in the integral is replaced by the fact
that random variables in MC are drawn from the same distribution. In other words, a high
p(x) in a given area of the domain X amplifies g(x) there. MC does the same thing, because
there are in fact more x drawn from this area, in making the N evaluations.

8.2 Making Random Numbers

The Monte Carlo method requires that we fire into our evaluation g(x) a group of N random
numbers (or sets of random numbers), drawn from a distribution (or a set of distributions
for more than one element in x). Here we describe how to generate such data from simple
distributions.

Note that both the normal and the uniform distributions are captured in standard MATLAB
commands.

We describe in particular how to generate samples of a given distribution, from random
numbers taken from an underlying uniform distribution. First, we say that the cumulative
probability function of the uniform distribution is

P (w) =

 0, w ≤ 0

 w, 0 < w < 1
 1, w ≥ 1

�

�

8	 STOCHASTIC SIMULATION	 62

If x = r(w) where r is the transformation we seek, recall that the cumulative probabilities
are

P (x) = P (r(w)) = P (w) = w,

and the result we need is that
x

w = P (x) = p(x)dx.
−∞

Our task is to come up with an x that goes with the uniformly distributed w - it is not as
hard as it would seem. As an example, suppose we want to generate a normal variable x
(zero mean, unity variance). We have

x 1
P (x) =

�
√

2π
e−t2/2dt = w

−∞

F (x) = w, or

x = F −1(w),

where F (x) is the cumulative probability function of a standard Gaussian variable (zero
mean, unity variance), and can be looked up or calculated with standard routines. Note
F (x) is related within a scale factor to the error function (erf).

As another example, consider the exponential distribution

p(x) = λe−λx;

this distribution is often used to describe the time of failure in complex systems. We have
x

P (x) = λe−λtdt = w
0

1 − e−λx =	 w or

−
log(1

λ

− w)
x	 =	 .

Similarly, this procedure applied to the Rayleigh distribution

p(x) = xe−x2/2

gives x =
�
−2 log(1 − w). In these formulas, we can replace (w − 1) with w throughout; w

is uniformly distributed on the interval [0,1], so they are equivalent.

8.3 Grid-Based Techniques

As noted above, moment calculations on the output variable are essentially an integral over
the domain of the random variables. Given this fact, an obvious approach is simply to focus

8 STOCHASTIC SIMULATION 63

on a high-quality integration routine that uses some fixed points x - in the Monte Carlo
method, these were chosen at random. In one dimension, we have the standard trapezoid
rule:

� b
g(x)dx

a
≈

n�
wig(xi),

i=1

with

w1

wn

w2, , wn−1· · ·
xi

=

=

=

=

(b − a)/2(n − 1)

(b − a)/2(n − 1)

(b − a)/(n − 1)

a + (i − 1)(b − a)/(n − 1).

Here the wi are simply weights, and g is to be evaluated at the different abscissas xi. This
rule has error of order 1/n2, meaning that a doubling in the number of points n gives a
fourfold improvement in the error. To make an integration in two dimensions we take the
tensor product of two single-dimension calculations:

n1 n2� b � d
g(x)dx ≈

� �
wiwj g(xij).

a c i=0 j=0

Here the abscissas have two elements, taken according to the grids in the two directions.
In many applications, the trapezoid rule in multi-dimensions works quite well and can give
a good understanding of the various moments of the given system. Extensions such as
Romberg integration, with the tensor product, can be applied to improve results.

A particularly powerful technique involving orthogonal polynomials is also available and it
gives truly remarkable accuracy for smooth functions. For our development here, we will
focus on normal distributions of random variables. These pertain to a particular set of
orthogonal polynomials known as the Hermite (pronounced ”hermit”) polynomials. These
are:

h0(x) = 1

h1(x) = x

h2(x) = x 2 − 1

· · ·
hn+1(x) = xhn(x) − nhn−1(x) (recurrence relation).

The defining feature of this set of polynomials is that

� ∞ 1
e−x2/2hi(x)hj (x)dx =

�
0, if and only if i = j

−∞
√

2π 1, if and only if i =
�

j.

Note that we have chosen a scaling so that the inner product comes out to be exactly one

- some textbook definitions of the Hermite polynomials will not match this. Note also that

�

�

8 STOCHASTIC SIMULATION 64

the inner product is taken with respect to the Gaussian exponential weighting function,
which we equate below with the Gaussian pdf. Now the magic comes from the following2: a
(2n − 1)’th order polynomial g(x) can be written as

g(x) = hn(x)[an−1hn−1(x) + an−2hn−2(x) + + a0h0(x)] + bn−1hn−1(x) + + b0h0(x). · · · · · ·

This formula, with the 2n coefficients a and b, covers the (2n − 1)’th-order term with
an−1hn(x)hn−1(x), and the zero’th order term with b0h0(x). It can be shown that all the
products are linearly independent, so that indeed all polynomials up to order 2n − 1 are
accounted for.

Returning to the integration problem, for the determination of moments, recall the definition
that

E(g(x)) =
 p(x)g(x)dx,
x�X

where p(x) is the probability density function of random variable x. Employing specifically
the Gaussian pdf in p(x) and the Hermite polynomials so as to achieve orthogonality, we can
integrate our g(x) as follows:

� ∞
p(x)g(x)dx = b0

� ∞
p(x)h0(x)dx = b0.

−∞ −∞

Thus, we have only to find b0! To do this, we cleverly select the abscissas to be the zeros (or
roots) of hn(x) - let’s call them x1, , xn. We obtain a linear system:· · ·

⎧
⎪⎪⎨

⎪⎪

⎫
⎪⎪⎬

⎪⎪

⎧
⎪⎪⎨

⎪⎪

⎫
⎪⎪⎬

⎪⎪
=

⎡

⎢⎢⎣

⎤

⎥⎥⎦

g(x1)
.
 .

hn−1(x1) h0(x1)
.

bn−1· · ·

.
 .
 . .
 .
 ,
 or
.
.
.
 .

⎩ ⎭ ⎩ ⎭g(xN) hn−1(xn) h0(xn) b0· · ·

�g = H�b

Notice that the a coefficients do not appear here because the xi are taken at the roots of
hn−1(x). The linear system can be solved easily as �b = H−1�g, and we have a special interest
in the last row, which of course has the solution for b0. Indeed, the bottom row of H−1 is the
set of weights wi, in complete analogy with the weights we defined above for the trapezoid
rule:

� ∞ n

i=1−∞

2Parts of this derivation follow J.R. Hockenberry and B.C. Lesieutre (2004), IEEE Transactions on Power
Systems, 19:1483-1491.

b0 p(x)g(x)dx =
 wig(xi).=

8 STOCHASTIC SIMULATION	 65

8.4 Issues of Cost and Accuracy

The balance of cost versus error for the methods above are summarized as:

• 	 The Monte-Carlo estimator has a variance that decreases with 1/N , where N is the
number of evaluations. There is no dependence on the random dimension d or on the
form of the function.

The trapezoidal rule in one dimension has an error that decreases with n−2 . •

• 	 Gauss-Hermite quadrature in one dimension matches exactly all polynomials g(x) of
order less than or equal to 2n − 1, and makes the best fit possible when it is of higher
order. The error is zero if g(x) is a polynomial of order 2n − 1 or less, but if not then
the error goes as n−r, where r is the ”smoothness” of the function. The smoothness is
the same as the number of derivatives that can be taken everywhere in the domain.

Some simple but important scaling laws show that the Monte Carlo will ultimately outper
form any quadrature rule, in high enough dimensions. Recall that the MC estimator G has
error - or standard deviation of error - that scales as

� = O(1/
√

N)

Now, in contrast, the error of a quadrature rule in one dimension scales as:

� = O(n−k),

where k is a parameter of the method used and the function itself, two for the trapezoid
rule we described above, and the smoothness r for Gaussian quadrature. Considering the
multi-dimensional quadrature case, the error stays the same but now the total number of
evaluations N includes all the grid points, i.e., N = nd (assuming N1 = N2 = = N).· · ·
Hence, here we have

� = O((N1/d)−k) = O(N−k/d)

Error in the quadrature rules is affected dramatically by d: Even in two dimensions, the
n−2 convergence of the trapezoid rule is degraded to n−1! In four dimensions, the error
rate of 1/

√
N is the same as for Monte Carlo. The Gaussian quadrature may do better for

some functions, but there are plenty of them for which r = 2, for example the innocuous
g(x) = x2 x	 !| |
Another major factor to consider is that the quadrature rules are inherently trying to make
a polynomial approximation of the function, whereas the Monte Carlo technique has no such
intention. Discontinuous and otherwise non-smooth functions in particular can cause serious
problems for the quadratures, which must have many points in order to cover the sharp spots
accurately.

8 STOCHASTIC SIMULATION 66

Summarizing, we recommend that you keep the two major classes of integration tools handy
grid-less and grid-based. For lower dimensions and smoother functions, Gaussian quadratures
can provide exceptional results, whereas the Monte-Carlo workhorse always comes out on top
for high-dimension, difficult functions. The differences are trivial for very cheap evaluations
of g, but become very compelling when each evaluation takes a lot of computer time, or
involves an actual experiment.

There are substantial extensions to multi-dimensional quadrature rules and to Monte Carlo
methods, some of which are available in the following references:

M.H. Kalos and P.A. Whitlock, 1986, Monte Carlo methods, volume 1: basics, New York:
Wiley.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1992, Numerical recipes in
C, Cambridge, UK: Cambridge University Press.

MIT OpenCourseWare
http://ocw.mit.edu

2.017J Design of Electromechanical Robotic Systems
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

