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8 STOCHASTIC SIMULATION 

Whereas in optimization we seek a set of parameters �x to minimize a cost, or to maximize a 
reward function J(�x), here we pose a related but different question. Given a system S, it is 
desired to understand how variations in the defining parameters �x lead to variations in the 
system output. We will focus on the case where �x is a set of random variables, that can be 
considered unchanging - they are static. In the context of robotic systems, these unknown 
parameters could be masses, stiffness, or geometric attributes. How does the system behavior 
depend on variations in these physical parameters? Such a calculation is immensely useful 
because real systems have to be robust against modeling errors. 

At the core of this question, the random parameters xi in our discussion are described by 
distributions; for example each could have a pdf p(xi). If the variable is known to be normal 
or uniformly distributed, then of course it suffices to specify the mean and variance, but in 
the general case, more information may be needed. 

8.1 Monte Carlo Simulation 

Suppose that we make N simulations, each time drawing the needed random parameters 
xi from a random number ”black box” (about which we will give more details in the next 
section). We define the high-level output of our system S to be g(�x). For simplicity, we 
will say that g(�x) is a scalar. g(�x) can be virtually any output of interest, for example: the 
value of one state at a given time after an impulsive input, or the integral over time of the 
trajectory of one of the outputs, with a given input. In what follows, will drop the vector 
notation on x for clarity. 

Let the estimator G of g(x) be defined as 

1 N 

G = 
� 

g(xj ). 
N j=1 

You recognize this as a straight average. Indeed, taking the expectation on both sides,
 

1 N 

E(G) = 
� 

E(g(xj )),
N j=1 

it is clear that E(G) = E(g). At the same time, however, we do not know E(g); we calculate 
G understanding that with a very large number of trials, G should approach E(g). Now 
let’s look at the variance of the estimator. This conceptually results from an infinite number 
of estimator trials, each one of which involves N evaluations of g according to the above 
definition. It is important to keep in mind that such a variance involves samples of the 
estimator (each involving N evaluations) - not the underlying function g(x). We have 



� 

� 
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σ2(G) = σ2 

⎡
⎣ 

⎤
⎦ 

N 

N 

� 

j=1 

N� 

1
 
g(xj ) 

⎡
⎣ 

⎤
⎦ 1 

σ2 g(xj )= 
N2 

j=1 

N� 

j=1 

1
 
= 

N2 
σ2(g) 

1 
= σ2(g). 

N 

This relation is key. The first equality follows from the fact that σ2(nx) = n2σ2(x), if n is 
a constant. The second equality is true because σ2(x + y) = σ2(x) + σ2(y), where x and y 
are random variables. The major result is that σ2(G) = σ2(g) if only one-sample trials are 
considered, but that σ2(G) 0 as N → ∞. Hence with a large enough N , we can indeed →
expect that our G will be very close to E(g). 

Let us take this a bit further, to get an explicit estimate for the error in G as we go to large 
N . Define a nondimensional estimator error 

G − E(g) 
q = 

σ(G) 

(G − E(g))
√

N 
= ,

σ(g) 

where the second equality comes from the result above. We call the factor σ(g)/
√

N the 
standard error. Invoking the central limit theorem, which guarantees that the distribution 
of G becomes Gaussian for large enough N , we have 

b 1 
e−t2/2dtlim prob(a < q < b)

N →∞ 
= 

a 
√

2π 
= F (a) − F (b),


where F (x) is the cumulative probability function of the standard Gaussian variable:


a 1 
e−t2/2dtF (a) =
 √

2π−∞ 

Looking up some values for F (x), we see that the nondimensional error is less than one in 
68.3% of trials; it is less than two in 95.4% of trials, and less than three in 99.7% of trials. 
The 99.7% confidence interval corresponds with 

−3 ≤ (G − E(g))
√

N/σ(g) ≤ 3 → 
 

−3σ(g)/
√

N ≤ G − E(g) ≤ 3σ(g)/
√

N.
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In general, quadrupling the number of trials improves the error by a factor of two.

So far we have been describing a single estimator G, which recovers the mean. The mean,
however, is in fact an integral over the random domain:

E(g) =
∫

p(x)g(x)dx,
xεX

where p(x) is the pdf of random variable x. So the Monte Carlo estimator G is in fact an
integrator:

G '
∫

p(x)g(x)dx.
xεX

We can just as easily define estimators of statistical moments:

1
Gn =

N

xng(x n
j) x p(x)g(x)dx,

N j '
∫

x Xj

∑

=1 ∃

which will follow the same basic convergence trends of the mean estimator G. These moments
can be calculated all using the same N evaluations of g(x).

The above equation gives another point of view to understand how the Monte Carlo approach
works: the effect of the probability density function in the integral is replaced by the fact
that random variables in MC are drawn from the same distribution. In other words, a high
p(x) in a given area of the domain X amplifies g(x) there. MC does the same thing, because
there are in fact more x drawn from this area, in making the N evaluations.

8.2 Making Random Numbers

The Monte Carlo method requires that we fire into our evaluation g(x) a group of N random
numbers (or sets of random numbers), drawn from a distribution (or a set of distributions
for more than one element in x). Here we describe how to generate such data from simple
distributions.

Note that both the normal and the uniform distributions are captured in standard MATLAB
commands.

We describe in particular how to generate samples of a given distribution, from random
numbers taken from an underlying uniform distribution. First, we say that the cumulative
probability function of the uniform distribution is

P (w) =


 0, w ≤ 0

 w, 0 < w < 1
 1, w ≥ 1



� 

� 
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If x = r(w) where r is the transformation we seek, recall that the cumulative probabilities 
are 

P (x) = P (r(w)) = P (w) = w, 

and the result we need is that 
x 

w = P (x) = p(x)dx. 
−∞ 

Our task is to come up with an x that goes with the uniformly distributed w - it is not as 
hard as it would seem. As an example, suppose we want to generate a normal variable x 
(zero mean, unity variance). We have 

x 1 
P (x) = 

� 
√

2π
e−t2/2dt = w 

−∞ 

F (x) = w, or 

x = F −1(w), 

where F (x) is the cumulative probability function of a standard Gaussian variable (zero 
mean, unity variance), and can be looked up or calculated with standard routines. Note 
F (x) is related within a scale factor to the error function (erf). 

As another example, consider the exponential distribution 

p(x) = λe−λx; 

this distribution is often used to describe the time of failure in complex systems. We have 
x 

P (x) = λe−λtdt = w 
0 

1 − e−λx =	 w or 

− 
log(1 

λ

− w) 
x	 =	 . 

Similarly, this procedure applied to the Rayleigh distribution 

p(x) = xe−x2/2 

gives x = 
�
−2 log(1 − w). In these formulas, we can replace (w − 1) with w throughout; w 

is uniformly distributed on the interval [0,1], so they are equivalent. 

8.3 Grid-Based Techniques 

As noted above, moment calculations on the output variable are essentially an integral over 
the domain of the random variables. Given this fact, an obvious approach is simply to focus 
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on a high-quality integration routine that uses some fixed points x - in the Monte Carlo 
method, these were chosen at random. In one dimension, we have the standard trapezoid 
rule: 

� b 
g(x)dx 

a 
≈ 

n� 
wig(xi), 

i=1 

with 

w1 

wn 

w2, , wn−1· · · 
xi 

= 

= 

= 

= 

(b − a)/2(n − 1) 

(b − a)/2(n − 1) 

(b − a)/(n − 1) 

a + (i − 1)(b − a)/(n − 1). 

Here the wi are simply weights, and g is to be evaluated at the different abscissas xi. This 
rule has error of order 1/n2, meaning that a doubling in the number of points n gives a 
fourfold improvement in the error. To make an integration in two dimensions we take the 
tensor product of two single-dimension calculations: 

n1 n2� b � d 
g(x)dx ≈ 

� � 
wiwj g(xij ). 

a c i=0 j=0 

Here the abscissas have two elements, taken according to the grids in the two directions. 
In many applications, the trapezoid rule in multi-dimensions works quite well and can give 
a good understanding of the various moments of the given system. Extensions such as 
Romberg integration, with the tensor product, can be applied to improve results. 

A particularly powerful technique involving orthogonal polynomials is also available and it 
gives truly remarkable accuracy for smooth functions. For our development here, we will 
focus on normal distributions of random variables. These pertain to a particular set of 
orthogonal polynomials known as the Hermite (pronounced ”hermit”) polynomials. These 
are: 

h0(x) = 1
 

h1(x) = x
 

h2(x) = x 2 − 1
 

· · · 
hn+1(x) = xhn(x) − nhn−1(x) (recurrence relation). 

The defining feature of this set of polynomials is that 

� ∞ 1 
e−x2/2hi(x)hj (x)dx = 

� 
0, if and only if i = j 

−∞ 
√

2π 1, if and only if i =
� 

j. 

Note that we have chosen a scaling so that the inner product comes out to be exactly one
 
- some textbook definitions of the Hermite polynomials will not match this. Note also that
 



� 

� 
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the inner product is taken with respect to the Gaussian exponential weighting function, 
which we equate below with the Gaussian pdf. Now the magic comes from the following2: a 
(2n − 1)’th order polynomial g(x) can be written as 

g(x) = hn(x)[an−1hn−1(x) + an−2hn−2(x) + + a0h0(x)] + bn−1hn−1(x) + + b0h0(x). · · · · · · 

This formula, with the 2n coefficients a and b, covers the (2n − 1)’th-order term with 
an−1hn(x)hn−1(x), and the zero’th order term with b0h0(x). It can be shown that all the 
products are linearly independent, so that indeed all polynomials up to order 2n − 1 are 
accounted for. 

Returning to the integration problem, for the determination of moments, recall the definition 
that 

E(g(x)) =
 p(x)g(x)dx, 
x�X 

where p(x) is the probability density function of random variable x. Employing specifically 
the Gaussian pdf in p(x) and the Hermite polynomials so as to achieve orthogonality, we can 
integrate our g(x) as follows: 

� ∞ 
p(x)g(x)dx = b0 

� ∞ 
p(x)h0(x)dx = b0. 

−∞ −∞ 

Thus, we have only to find b0! To do this, we cleverly select the abscissas to be the zeros (or 
roots) of hn(x) - let’s call them x1, , xn. We obtain a linear system:· · · 

⎧
⎪⎪⎨ 

⎪⎪

⎫
⎪⎪⎬ 

⎪⎪

⎧
⎪⎪⎨ 

⎪⎪

⎫
⎪⎪⎬ 

⎪⎪
=
 

⎡ 

⎢⎢⎣ 

⎤ 

⎥⎥⎦ 

g(x1) 
.
 .
 

hn−1(x1) h0(x1) 
. 

bn−1· · ·

.
 .
 . .
 .
 ,
 or
.
.
.
 .
 

⎩ ⎭ ⎩ ⎭g(xN ) hn−1(xn) h0(xn) b0· · ·

�g = H�b 

Notice that the a coefficients do not appear here because the xi are taken at the roots of 
hn−1(x). The linear system can be solved easily as �b = H−1�g, and we have a special interest 
in the last row, which of course has the solution for b0. Indeed, the bottom row of H−1 is the 
set of weights wi, in complete analogy with the weights we defined above for the trapezoid 
rule: 

� ∞ n 

i=1−∞ 

2Parts of this derivation follow J.R. Hockenberry and B.C. Lesieutre (2004), IEEE Transactions on Power 
Systems, 19:1483-1491. 

b0 p(x)g(x)dx =
 wig(xi).=
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8.4 Issues of Cost and Accuracy 

The balance of cost versus error for the methods above are summarized as: 

• 	 The Monte-Carlo estimator has a variance that decreases with 1/N , where N is the 
number of evaluations. There is no dependence on the random dimension d or on the 
form of the function. 

The trapezoidal rule in one dimension has an error that decreases with n−2 . • 

• 	 Gauss-Hermite quadrature in one dimension matches exactly all polynomials g(x) of 
order less than or equal to 2n − 1, and makes the best fit possible when it is of higher 
order. The error is zero if g(x) is a polynomial of order 2n − 1 or less, but if not then 
the error goes as n−r, where r is the ”smoothness” of the function. The smoothness is 
the same as the number of derivatives that can be taken everywhere in the domain. 

Some simple but important scaling laws show that the Monte Carlo will ultimately outper
form any quadrature rule, in high enough dimensions. Recall that the MC estimator G has 
error - or standard deviation of error - that scales as 

� = O(1/
√

N) 

Now, in contrast, the error of a quadrature rule in one dimension scales as: 

� = O(n−k), 

where k is a parameter of the method used and the function itself, two for the trapezoid 
rule we described above, and the smoothness r for Gaussian quadrature. Considering the 
multi-dimensional quadrature case, the error stays the same but now the total number of 
evaluations N includes all the grid points, i.e., N = nd (assuming N1 = N2 = = N).· · · 
Hence, here we have 

� = O((N1/d)−k) = O(N−k/d) 

Error in the quadrature rules is affected dramatically by d: Even in two dimensions, the 
n−2 convergence of the trapezoid rule is degraded to n−1! In four dimensions, the error 
rate of 1/

√
N is the same as for Monte Carlo. The Gaussian quadrature may do better for 

some functions, but there are plenty of them for which r = 2, for example the innocuous 
g(x) = x2 x	 !| | 
Another major factor to consider is that the quadrature rules are inherently trying to make 
a polynomial approximation of the function, whereas the Monte Carlo technique has no such 
intention. Discontinuous and otherwise non-smooth functions in particular can cause serious 
problems for the quadratures, which must have many points in order to cover the sharp spots 
accurately. 
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Summarizing, we recommend that you keep the two major classes of integration tools handy 
grid-less and grid-based. For lower dimensions and smoother functions, Gaussian quadratures 
can provide exceptional results, whereas the Monte-Carlo workhorse always comes out on top 
for high-dimension, difficult functions. The differences are trivial for very cheap evaluations 
of g, but become very compelling when each evaluation takes a lot of computer time, or 
involves an actual experiment. 

There are substantial extensions to multi-dimensional quadrature rules and to Monte Carlo 
methods, some of which are available in the following references: 

M.H. Kalos and P.A. Whitlock, 1986, Monte Carlo methods, volume 1: basics, New York: 
Wiley. 

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1992, Numerical recipes in 
C, Cambridge, UK: Cambridge University Press. 
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