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1. Sketch the Root Locus for the open–loop pole–zero configurations shown in page
18 of Lecture 11. For each case, briefly justify your choices using the Root Locus
properties / sketching rules. (You may use Matlab to verify your sketches, but
make sure you understand the relationship between the Root Locus appearance
and its properties.)

2. Consider the Root Loci shown in page 19 of Lecture 11. For each one, briefly state
if they are valid, i.e. if they meet the Root Locus properties / sketching rules.
For those that are invalid, sketch the correct Root Locus. (If you use Matlab to
verify your answers, please make sure that you match Matlab’s numerical answers
to the Root Locus properties / sketching rules.)

3. We are given a feedback system described by the block diagram shown below.

Y (s) X(s)
Gp(s)KGc(s)

The plant transfer function is

8
Gp(s) = .

(s+ 2)(s+ 4)

In this problem, we will investigate the effect of gain K and different controllers
Gc(s) on system performance. You may use Matlab to obtain numerical values
for the response characteristics (such as settling time, etc.) but you should make
sure you verify the results with the analytical formulae from the class notes and
textbook.
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3.a) Before considering feedback control, calculate the values of damping ratio
ζ and natural frequency ωn for the plant transfer function Gp(s). Which is
the dominant pole and what is the slowest time constant that we can expect
for he open–loop plant? Verify using Matlab.

3.b) Going on to feedback control for this plant, first we consider a proportional
(P) controller

Gc = 1.

Using Matlab, sketch the Root Locus for the P controller and verify its
appearance with the Root Locus properties / sketching rules. What is the
smallest value of gain K that results in the fastest possible settling time for
this controller? What is the steady–state error?

3.c) To speed up the response further, we now consider a proportional–derivative
(PD) controller,

Gc = s+ z,

with the zero located at s = −6 (it i.e., z = 6.) Using Matlab, sketch the
Root Locus for the PD controller and verify its appearance with the Root
Locus properties / sketching rules. For gain K = 0.25, what are the settling
time and overshoot? What is the steady–state error?

3.d) To eliminate steady–state error, we first consider a pure integral (I) con-
troller,

1
Gc = .

s

Show that indeed the steady–state error is zero in this configuration. Using
Matlab, sketch the Root Locus for the I controller and verify its appearance
with the Root Locus properties / sketching rules. Point out two obvious
disadvantages of the I controller in terms of the response speed and stability
of the feedback loop.

3.e) To fix the problems with the pure integral controller, let us now consider a
proportional–integral (PI) controller,

s+ zi
Gc = ,

s

where now the zero is located very near the origin, at s = −0.1 (it i.e.,
z = 0.1.) Using Matlab, sketch the Root Locus for the PI controller and
verify its appearance with the Root Locus properties / sketching rules. Note
the similarities and differences between this Root Locus and the Root Lo-
cus of the P controller from question (b). Verify analytically that in the PI
controller the steady–state error is still eliminated. Also verify using Matlab
that the fastest possible setting time yielded by the PI controller is approx-
imately the same as the fastest possible settling time of the P controller.

2



(You will have to adjust the gain K to a value of 3 ∼ 4 or higher. The PI
controller is slightly slower, actually.)

3.f) To enjoy the benefits of both PD and PI control (faster settling time and
no steady–state error, respectively), we finally consider the PID controller

s+ zi
Gc = (s+ z) ,

s

where the two zeros z and zi are in the same locations as before. Using Mat-
lab, sketch the Root Locus for the PID controller and verify its appearance
with the Root Locus properties / sketching rules. Still using Matlab, adjust
the gain such that the rise time equals approximately 0.1 sec and compute
the overshoot and steady–state error for this control configuration. What
do you observe?

4. In this problem, we will generate a state–space representation for the compensated
2.04A Tower system. The model is shown in the figure below. The wind force
(disturbance) is denoted as w, and the actuator force is denoted as a. Note that
the actuator exerts equal but opposite forces on the tower and slider.

4.a) Which forces are acting on the tower? Be particularly careful when you
include the force due to spring k2, since the spring extension is the relative
displacement of the tower with respect to the slider. Similarly, be particu-
larly careful when you include the force due to damper b2, since damping
is due to the relative velocity of the tower with respect to the slider. By
applying force balance, obtain an equation of motion for the tower.

4.b) Which forces are acting on the slider? Be careful with the spring and
damper forces for the same reasons quoted in the previous question. By
applying force balance, obtain an equation of motion for the slider.
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4.c) Now define the tower displacement and velocity x1, v1 = ẋ1, respectively,
and slider displacement and velocity x2, v2 = ẋ2, respectively, as shown in
the Figure. We will refer to these as the state variables. We also define
the state vector

q =


q1 x1
q2 v
q3


≡


1

x2


 

.

q4

 
v2


Rewrite the tower’s and slider’s


equations

 
of motion


in terms of the state

variables q1, q2, q3, q4.

4.d) Solve the tower’s equation of motion for q̇2 and the slider’s equation of
motion for q̇4.

4.e) To the two equations that you obtained in the previous question append the
definitions q2 = q̇1, q4 = q̇3. Rewrite the resulting four equations in matrix
form, i.e. find the matrix A and vectors B, G such that

q̇(t) = Aq(t) + Ba(t) + Gw(t).

We will refer to B, G as actuation and disturbance vectors, respectively.
(Note that in multi–input systems B and G would actually be matrices;
hence, the uppercase letter notation.)

4.f) Now substitute system parameters m1 = 5.11kg, b1 = 0.767N · sec/m,
k1 = 2024N/m; m2 = 0.87kg, b2 = 8.9N · sec/m, k2 = 185N/m. Using
these values into the system matrix A and use Matlab to compute the
eigenvectors and eigenvalues as follows: [va,da]=eigs(a). This will return
two matrices va and da. The columns of matrix va are the eigenvectors;
the diagonal elements of matrix da are the eigenvalues corresponding to the
eigenvectors column–by–column. The four eigenvalues you obtain should
form two complex–conjugate pairs.

4.g) The eigenvalues of the matrix A are the same as the poles of the transfer
function relating any of the state variables q1, q2, q3, q4 to either the actua-
tion a or the disturbance w. Use this fact to obtain the respective damped
oscillation frequencies and natural frequencies of the two modes of oscilla-
tion of this system (one mode corresponds to one complex–conjugate pair of
poles≡eigenvalues.) Use the result to justify the following statement: “The
2.04A Tower has two modes of oscillation, one slow and one fast.”

4.h) Use the correspondence between eigenvectors and eigenvalues to justify the
following statement: “In the slow mode the tower and slider mass oscillate
in phase, while in the fast mode the tower and slider mass oscillate out of
phase.”
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4.i) In Matlab, define the matrices b, c1 such that b is the actuation matrix
with the wind force acting as the sole input to the system and c1 is the
observation matrix with the tower displacement as the system output. Also
define a scalar d=0. Use the command tower1=ss(a,b,c1,d) to obtain
the state–space representation of the system. Call the LTI Viewer with
the command ltiview, import tower1 and select the impulse response.
Which mode has been excited by the impulse input? Compare the damped
frequency of oscillation of the mode that you think has been excited with
the frequency of oscillation that you measure from the impulse response
simulation.

4.j) Now define a new matrix c2 such that the slider displacement is the system
output, and a new state–space representation tower2=ss(a,b,c2,d). Open
a new LTI Viewer window (without closing the window that you generated in
the previous question), import tower2 and generate its impulse response. Is
the phase relationship between the tower1 and tower2 responses consistent
with the oscillation mode that the system is in?

4.k) Convenient as they are for observing these interesting behaviors, the tower
and slider displacements are not easy to measure in a real situation of active
compensation in a building. To emulate the situation better, in our exper-
imental project we will use two independent measurements of the tower
velocity v1 and relative velocity v2 − v1, respectively. Define a new ma-
trix c3 for these output variables, and a new state–space representation
tower3=ss(a,b,c3,d). Generate its impulse response in the LTI viewer,
and comment on how it relates to the displacement impulse responses of the
previous questions.
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