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1. For each one of the following transfer functions, identify the zeros and poles,
show their locations on the complex (s–) plane, then and derive and plot the step
response.

1.a)
2

T (s) =
s+ 2

Answer: Pole: p=-2, Zero: none
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Step response (1− e−2t)u(t). 1st order system.

1.b)
5

T (s) =
(s+ 2)(s+ 6)

Answer: Poles: p1 = −2, p2 = −6, Zero: none
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ω2
n = 12 and ζ = 4/ 12 = 1.15 > 1. 2nd order overdamped system.

Step response [1 +K e−p1t +K e−p2t1 2 ]u(t).

1.c)
10(s+ 7)

T (s) =
(s+ 10)(s+ 20)

Answer: Poles: p1 = −10, p2 = −20, Zeros: z1 = −7
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n = 200 and ζ = 30/2/

√
200 = 1.06 > 1. 2nd order overdamped system.

Step response [1 +K e−p1t +K e−p2t1 2 ]u(t).

1.d)
20

T (s) =
s2 + 6s+ 144

Answer: Poles: p1 = −3 + j11.619, p2 = −3− j11.619, Zeros: none
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ω2
n = 144 and ζ = 6/2/ 144 = 0.25 < 1. 2nd order underdamped system.

Step response [1− Ae−σdt cos (ωdt− φ)]u(t).

1.e)
s+ 2

T (s) =
s2 + 9

Answer: Poles: p1 = 3j, p2 = 3j, Zero: z = 2
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n = 9 and ζ = 0. 2nd order undamped system.

Step response [1−K1 sin (3t) +K2 cos (3t)]u(t).

1.f)
(s+ 5)

T (s) =
(s+ 10)2

Answer: Poles: p = −10(double), Zeors: z = −5
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n = 100 and ζ = 1. 2nd order critically damped system.

Step response [K0 +K1e
−10t −K 10t

2te
− ]u(t).

2. A second–order system has the step response shown below.1 Determine its trans-
fer function.
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Answer: This is under–damped 2nd order system. Starting from the transfer
function of the second order system

ω2

A n ,
s2 + 2ζω 2

ns+ ω

we have to decide the parameters of A(constant),ζ(damping ratio) and ωn(natural
frequency).

From the final value theorem,

1 Aω2

lim s n = A
s→0 s s2 + 2ζωns+ ω2

n

1a.u. denotes arbitrary units; its use appropriate when we consider a function that does not
correspond to any particular physical quantity.

4



and the steady state value is 1 (from the given figure). Therefore, A = 1.

The step response of the under–damped second order system is
[
1− ae−σdt cos (ωdt− φ) u(t),

where σ 2
d = ζωn and ωd = ωn

√
1− ζ .

]

From the lecture note 7 (pp. 26), %OS = exp − ζπ
1−ζ2 : 72%.

Thus the damping ratio ζ ≈ 0.1.

( )

To get the natural frequency, we choose two peak points at t1 = 0.35 sec and
t2 = 0.95 sec. The cosine term will be 1 at the peaks, so that we can consider
exponential decay term only.

f(t1) = 1− ae−σdt1 = 1.72

f(t2) = 1− ae−σdt2 = 1.4

Dividing the two equations, we obtain

ae−σdt1 1 1.72
= .

σdt

−
ae− 1 1− 1.4

From that σ =
{

ln
(
0.72

d

)}
/ {t2 − t1} = 0.9796. Therefore ωn0.4

≈ 9.8. (The reason
why I picked two points instead of one point is to cancel the constant a).

The transfer function is
64

,
s2 + 1.96s+ 96

and its step response by MATLAB is
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Note that the estimated parameters might be slightly different than the original
because our reading of the plot can never be completely accurate.
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3. Consider a pendulum and inverted pendulum, as shown in the figure below.
In this problem we will explore how they are different physically, and how the
difference is mapped out in the Laplace domain. We assume that the mass m
and length l are the same in both cases, and that they are both subject to viscous
friction with coefficient b from the surrounding medium (in reality, the pendulums
would be subject to drag forces as well, but we neglect them here to simplify the
problem.) In both cases, the pendulums are driven by a force r(t) applied in
the direction tangential to the motion. The initial conditions are θ(0) = 0 and
θ̇(0) = 0.

m

m

✓

✓l

lr(t)

r(t)

3.a) Derive the equations of motion for the two cases, using the angle θ(t) as the
output variable, and assuming small motion |θ| � 1 away from the vertical.

m

✓

mg sin ✓

mg sin ✓

mg

Ffriction

mg

Ffriction

✓ r(t)

r(t)
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Answer: We begin with the free–body diagrams (FBDs) for the two cases,
shown respectively above as well. For the standard pendulum (left–hand
side) torque balance from the FBD in conjunction with Newton’s law of
motion yield

ml2θ̈(t) = r(t)l −mgl sin θ(t)− Ffrictionl. (1)

˙Substituting for viscous friction Ffriction = bθ(t), and dividing across by ml2

we obtain the equation of motion

b g r(t)¨ ˙θ(t) + θ(t) + sin θ(t) = . (2)
ml l ml

Assuming that the pendulum never strays too far away from the vertical,
|θ| � 1, therefore sin θ ≈ 1 and the linearized equation of motion becomes

b g r(t)¨ ˙θ(t) + θ(t) + θ(t) = . (3)
ml l ml

Following similar procedure in the case of the inverted pendulum (right–
hand side in the above figure) torque balance yields

ml2θ̈(t) = r(t) +mgl sin θ(t)− Ffrictionl. (4)

from which we obtain the liberalized equation of motion as

b g r(t)¨ ˙θ(t) + θ(t)− θ(t) = . (5)
ml l ml

Comparing (5) and (3), we can see that there is only a difference in sign
compared to the standard pendulum case. However, we will see that this
difference has a profound effect on the system behavior.

3.b) Derive the transfer function Θ(s)/R(s) for the two cases, and draw the
locations of any poles and zeros that you find on the complex (s–) plane.

Answer: Starting with the standard pendulum, Laplace transforming both
sides of (3) and taking into account the zero initial conditions, we obtain

1
Θ(s) ml= . (6)
R(s) s2

b g
+ s+
ml l

From this we conclude that there are no zeros in the transfer function, and
there are two poles located at

1
sp =±

2


2

b− ±
√(

b

ml

)
g− 4 (7)
l



.
ml

 
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Under normal conditions, we expect friction to be weak, certainly so that
the friction coefficient satisfies b < 2m

√
gl. Then the two poles become

complex, with real part
b−

2ml

and conjugate imaginary parts

2
g±

√(
b

4
l
−
ml

)
.

Matching the coefficients of the polynomial in the denominator with those
of our “standard” 2nd–order system transfer function, we find that for the
standard pendulum

b
ωn 2

√
g 1

= , ζ =
l 2m

√ . (8)
gl

In the case of the inverted pendulum, similar procedure yields

1
Θ(s) ml2= . (9)
R(s) s2

b g
+ s
ml
−
l

Again, there are no zeros, and there are two poles located at

2
1 b b g

sp =±
2



− .
ml
±
√(

ml

)
+ 4

l



(10)

Unlike the previous case, bo



th poles are now real, and,



moreover, the pole
located at

1 b g
sp+ =


− +

√(
b
)2

+ 4


 .

2 ml ml l

is positive! This indicates that the impulse, step, etc. responses of the
inverted pendulum contain exponentially increasing terms. (You can easily
verify the effect of the exponentially increasing term by trying to hold a pen
upright on your palm.) It is important to note that, since θ(t) may increase
exponentially in this case, the assumption of small |θ| � 1 will break down
after some time t, and then system behavior won’t be well modeled by our
equations.

The locations of the system poles for the standard and inverted pendulum
on the complex plane are shown on the left– and right–hand side diagrams
below, respectively, on the next page. Note the locations of the poles for the
underdamped standard pendulum are symmetric with respect to the real

8



axis (i.e., complex conjugates). Also note the location of one pole of the
inverted pendulum on the right–hand side of the complex plane. Systems
with at least one pole on the right–hand side of the complex plane are called
unstable.
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