
Structural Mechanics 2.080 Lecture 12 Semester Yr

Lecture 12: Fundamental Concepts in Structural

Plasticity

Plastic properties of the material were already introduced briefly earlier in the present

notes. The critical slenderness ratio of column is controlled by the yield stress of the

material. The subsequent buckling of column in the plastic range requires the knowledge

of the hardening curve. These two topics were described in Lecture 9. In Lecture 10

the concept of the ultimate strength of plates was introduced and it was shown that the

yield stress is reached first along the supported or clamped edges and the plastic zones

spread towards the plate center, leading to the loss of stiffness and strength. In the present

lecture the above simple concepts will be extended and formalized to prepare around for

the structural applications in terms of the limit analysis.

There are five basic concepts in the theory of plasticity:

• Yield condition

• Hardening curve

• Incompressibility

• Flow rule

• Loading/unloading criterion

All of the above concept will first be explained in the 1-D case and then extended to the

general 3-D case.

12.1 Hardening Curve and Yield Curve

If we go to the lab and perform a standard tensile test on a round specimen or a flat dog-

bone specimen made of steel or aluminum, most probably the engineering stress-strain curve

will look like the one shown in Fig. (12.1a). The following features can be distinguished:

Point A - proportionality limit

Point B - 0.02% yield

Point C - arbitrary point on the hardening curve showing different trajectories on

loading/unloading

Point D - fully unloaded specimen

For most of material the initial portion of the stress-strain curve is straight up to the

proportionality limit, point A. From this stage on the stress-strain curve becomes slightly

curved but there is no distinct yield point with a sudden change of slope. There is in

international standard the yield stress is mapped by taking elastic slope with 0.02% strain
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Figure 12.1: Elastic, plastic and total stress-strain curve.

(ε = 0.0002) offset strain. Upon loading, the material hardens and the stress is increasing

with diminishing slop until the testing machine (either force or displacement controlled)

is stopped. There are two possibilities. On unloading, meaning reversing the load or

displacement of the cross-load of the testing machine, the unloading trajectory is straight.

This is the elastic unloading where the slop of the stress-strain curve is equal to the initial

slope, given by the Young’s modulus. At point D the stress is zero but there is a residual

plastic strain of the magnitude OD. The experiment on loading/unloading tell us that the

total strain εtotal can be considered as the sum of the plastic strain εplastic and elastic strain

εelastic. Thus

εtotal = εplastic + εelastic (12.1)

The elastic component is not constant but depends on the current stress

εelastic =
σ

E
(12.2)

The plastic strain depends on how far a given specimen is loaded, and thus there is a

difference between the total (measured) strain and known elastic strain. Various empirical

formulas were suggested in the literature to fit the measured relation between the stress

and the plastic strain. The most common is the swift hardening law

σ = A(εplastic + εo)
n (12.3)

where A is the stress amplitude, n is the hardening exponent and εo is the strain shift

parameter.

In many practical problems the magnitude of plastic strain is mud larger than the

parameter εo, giving rise to a simpler power hardening law, extensively used in the literature.

σ = Aεn

For most metals the exponent n is the range of n = 0.1− 0.3, and the amplitude can vary a

lot, depending on the grade of steel. A description of the reverse loading and cycling plastic

loading is beyond the scope of the present lecture notes.
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Figure 12.2: The experimentally measured stress-strain curve and the fit by the swift law.

Various other approximation of the actual stress-strain curve of the material are in

common use and some of then are shown in Fig. (12.3).
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Figure 12.3: Elastic-linear hardening material (a) and rigid-plastic hardening material (b).

A further simplification is obtained by considering the average value σo of the stress-

strain curve, illustrated in Fig. (12.3b). This concept gave rise to the concept of the

rigid-perfectly plastic material characteristic time, depicted in Fig. (12.4).

The material model shown in Fig. (12.4) is adopted in the development of the limit

analysis of structures. The extension of the concept of the hardening curve to the 3-D case

will be presented later, after deriving the expression for the yield condition.

12.2 Loading/Unloading Condition

In the 1-D case the plastic flow rule is reduced to the following statement:

ε̇p > 0 σ = σo (12.4a)

ε̇p < 0 σ = −σo (12.4b)

ε̇p = 0 σo < σ < −σo (12.4c)
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Figure 12.4: The flow stress |σo| is assumed to be identical in tension and compression in

the rigid-perfectly plastic material model.

In the case of unloading, the stress follow the path CD on the σ-εp graph. If the strain rate

is an independent variable, the path of all unloading cases is the same CBO, as shown in

Fig. (12.4).

12.3 Incompressibility

Numerous experiments performed over the past 100% have shown that metals are practically

incompressible in the plastic range. Let’s explore the consequences of this physical fact

in the case of one-dimensional case. Denote the gauge length of the prismatic bar by l

and its cross-sectional area by A. The current volume of the gauge section is V = Al.

Incompressibility means that the volume must be unchanged or dV = 0.

dV = d(Al) = dAl +Adl = 0 (12.5)

From Eq. (12.5) we infer that the strain increment dε can be calculated either by tracking

down the gauge length or the cross-sectional area

dε =
dl

l
= −dA

A
(12.6)

Integrating the first part of Eq. (??)

ε = ln l + C1 (12.7)

The integration constant is obtained by requiring that the strain vanishes when the length

l is equal to the gauge initial, reference length lo, which gives C = − ln lo. Thus

ε = ln
l

lo
(12.8)
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which is the logarithmic definition of strain, introduced in Lecture 2. Similarly, integrating

the second part of Eq. (??) with the initial condition at A = Ao, ε = 0, one gets

ε = ln
Ao
A

(12.9)

In tension l > lo or A < Ao, so both Eqs. (??) and (??) gives the positive strain. In

compression the strain is negative. The same is true for strain increments dε or strain rates

ε̇ =
l̇

l
or ε̇ = −Ȧ

A
(12.10)

From the above analysis follows a simple extension of the plastic incompressibility condition

into the 3-D case. Consider an infinitesimal volume element V = x1x2x3, Fig. (12.5).

lo 

Ao 

l 

A 

x3 

x1 

x2 

Figure 12.5: Undeformed and deformed 1-D and 3-D volume elements.

The plastic incompressibility requires that

dV = d(x1x2x3) = dx1(x2x3) + x1d(x2x3)

= dx1x2x3 + x1dx2x3 + x1x2dx3
(12.11)

Dividing both sides of the above equation by the volume, one gets

dx1
x1

+
dx2
x2

+
dx3
x3

= 0 (12.12)

or

dε11 + dε22 + dε33 = 0, dεkk = 0

Noting that dε11 =
∂ε11
∂t

dt = ε̇11dt, an alternative form of the incompressibility condition

is

ε̇11 + ε̇22 + ε̇33 = 0, ε̇kk = 0 (12.13)

The sum of the diagonal components of the strain rate tensor must vanish to ensure incom-

pressibility. It follows from the flow rule (to be formulated later) that in uniaxial tension in

x1 direction the components ε̇22 = ε̇33. Therefore ε̇11 + 2ε̇22 = 0 or ε̇11 + 2ε̇33 = 0. Finally

we obtain

ε̇22 = −0.5ε̇11, ε̇33 = −0.5ε̇11 (12.14)
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The coefficient 0.5 can be interpreted as the Poisson ratio

ν = − ε̇22
ε̇11

= − ε̇33
ε̇11

= 0.5 (12.15)

We can conclude that plastic incompressibility requires that the Poisson ratio be equal to

1/2, which is different from the elastic Poisson ratio, equal ∼ 0.3 for metals. Many other

materials such as rubber, polymers and water are incompressible.

12.4 Yield Condition

From the previous section, the uniaxial yield condition under tension/compression in the

x-direction is

σ11 = ±σy (12.16)

In the general 3-D, all six components of the stress tensor contribute to yielding of the

material. The von Mises yield condition takes the form

1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3(σ212 + σ223 + σ231)] = σ2y (12.17)

or in a short-hand notation

F (σij) = σy

The step-by-step derivation of the above equation is given in the next section. Here, several

special cases are considered.

Principle coordinate system

All non-diagonal components of the stress tensor vanish, σ12 = σ23 = σ31 = 0. Then, Eq.

(12.12) reduces to

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 2σ2y (12.18)

where σ1, σ2 σ3 are principal stresses. The graphical representation of Eq. (??) is the open

ended cylinder normal to the octahedral plane, Fig. (12.6).

The equation of the straight line normal to the octahedral plane and passing through

the origin is

σ1 + σ2 + σ3 = 3p (12.19)

where p is the hydrostatic pressure. Since the hydrostatic pressure does not have any effect

on yielding, the yield surface is an open cylinder.

Plane stress

Substituting σ13 = σ23 = σ33 = 0 in Eq. (12.12), the plane stress yield condition becomes

σ211 − σ11σ22 + σ222 + 3σ212 = σ2y (12.20)
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Figure 12.6: Representation of the von Mises yield condition in the space of principal

stresses.

In particular, in pure shear σ11 = σ22 = 0 and σ12 = σy/
√

3. In the literature σy/
√

3 = k

is called the yield stress in shear corresponding to the von Mises yield condition. In the

principal coordinate system σ12 = 0 and the yield condition takes a simple form

σ21 − σ1σ2 + σ22 = σ2y (12.21)
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Figure 12.7: The von Mises ellipse in the principal coordinate system.

The graphical representation of Eq. (??) is the ellipse shown in Fig. (12.7). Several

important stress states can be identified in Fig. (12.7).

Point 1 and 2 – Uniaxial tension, σ1 = σ2 = σy
Point 7 and 11 – Uniaxial compression, σ1 = σ2 = −σy
Point 3 – Equi-biaxial tension, σ1 = σ2
Point 9 – Equi-biaxial compression, −σ1 = −σ2
Points 2, 4, 8 and 10 – Plain strain, σ1 = 2√

3
σy

Points 6 and 12 – Pure shear, σ1 = −σ2
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The concept of the plane strain will be explained in the section dealing with the flow rule.

Equivalent stress and equivalent strain rate

In the finite element analysis the concept of the equivalent stress σ̄ or the von Mises stress

is used. It is defined by in terms of principal stresses

σ̄ =
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] (12.22)

The equivalent stress σ̄(σij) is the square root of the left hand side of Eq. (12.12). Having

defined the equivalent stress, the energy conjugate equivalent strain rate can be evaluated

from

σ̄¯̇ε = σij ε̇ij (12.23)

and is given by

¯̇ε =

{
2

9

[
(ε̇11 − ε̇22)2 + (ε̇22 − ε̇33)2 + (ε̇33 − ε̇11)2

]}1/2

(12.24)

The equivalent strain is obtained from integrating in time the equivalent strain rate

ε̄ =

∫
¯̇εdt (12.25)

12.5 Isotropie and Kinematic Hardening

It should be noted that in the case of uniaxial stress, σ2 = σ3 = 0 and Eq. (12.14) reduces

to σ̄ = σ1. Likewise, for uniaxial stress ε̇2 = −0.5ε1 and ε̇3 = −0.5ε1 and the equivalent

strain rate becomes equal to ¯̇ε = ε̇1. Then, according to Eq. (??), ε̄1 = ε1. The hypothesis

of the isotropic hardening is that the size of the instantaneous yield condition, represented

by the radius of the cylinder (Fig. (12.6)) is a function of the intensity of the plastic strain

defined by the equivalent plastic strain ε̄. Thus

σ̄ = σy(ε̄) (12.26)

The hardening function σy(ε̄) is determined from a single test, such as a uniaxial tension.

In this case

σ̄ = σ1 = σy(ε̄) = σy(ε1) (12.27)

Thus the form of the function σy(ε̄) is identical to the hardening curve obtained from the

tensile experiment. If the tensile test is fit by the power hardening law, the equivalent stress

is a power function of the equivalent strain

σ̄ = Aε̄n (12.28)
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Figure 12.8: Comparison of the isotropic and kinematic hardening under plane stress.

The above function often serves as an input to many general purpose finite element codes.

A graphical representation of the 3-D hardening rule is a uniform growth of the initial yield

ellipse with equivalent strain ε̄, Fig. (12.8).

In the case of kinematic hardening the size of the initial yield surface remains the same,

but the center of the ellipse is shifted, see Fig. (12.8). The coordinates of the center of the

ellipse is called the back stress. The concept of the kinematic hardening is important for

reverse and cyclic loading. It will not be further pursued in the present lecture notes.

12.6 Flow Rule

The simplest form of the associated flow rule for a rigid perfectly plastic material is given

by

ε̇ij = λ̇
∂F (σij)

∂σij
(12.29)

where the function F (σij) is defined by Eq. (12.12), and λ̇ is the scalar multiplication

factor. Equation (12.15) determines uniquely the direction of the strain rate vector, which

is always directed normal to the yield surface at a given stress point. In the case of plane

stress, the two components of the strain rate vector are

ε̇1 = λ̇(2σ1 − σ2) (12.30a)

ε̇2 = λ̇(2σ2 − σ1) (12.30b)

The magnitudes of the components ε̇1 and ε̇2 are undetermined, but the ratio, which defines

the direction ε̇/ε2, is uniquely determined.

In particular, under the transverse plain strain ε̇2 = 0, so σ1 = 2σ2 and σ1 =
2√
3
σy.
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Figure 12.9: The strain rate vector is always normal to the yield surface.
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ADVANCED TOPIC

12.7 Derivation of the Yield Condition from First Principles

The analysis starts from stating the stress-strain relations for the elastic material, covered

in Lecture 4. The general Hook’s law for the isotropic material is

εij =
1

E
[(1 + ν)σij − νσkkδij ] (12.31)

The elastic constitutive equation can also be written in an alternative form, separately for

the distortional and dilatational part

eij =
1 + ν

E
sij − distorsion (12.32a)

εkk =
1− 2ν

E
σkk − dilatation (12.32b)

The next step is to invoke the basic property of the elastic material that the strain

energy density Ū , defined by

Ū =

∮
σij dεij (12.33)

does not depend on the loading path of the above line integral but only on the final state.

Thus, evaluating the strain energy on the proportional (straight) loading path, one gets

Ū =
1

2
σijεij (12.34)

The next step is to prove that the strain energy density can be decomposed into the

distortional and dilatational part. This is done by recalling the definition of the stress

deviator sij and strain deviator eij

σij = sij +
1

3
σkkδij (12.35a)

εij = eij +
1

3
εkkδij (12.35b)

Introducing Eq. (12.20) into Eq. (12.19), there will be four terms in the expression for Ū

2Ū = sijeij + sij
1

3
εkkδij +

1

3
σkkδijeij +

1

3
σkkδij

1

3
εkkδij (12.36)

Note that sijδij = sii = 0 from the definition, Eq. (12.20). Likewise eijδij = ejj = 0, also

from the definition. Therefore the second and third term of Eq. (??) vanish and the energy

density becomes

Ū =
1

2
sijeij +

1

6
σkkεll = Ūdist + Ūdil (12.37)

Attention is focused on the distortional energy, which with the help of the elasticity law Eq.

(12.17) can be put into the form

Ūdist =
1 + ν

2E
sijsij (12.38)
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The product sijsij can be expressed in terms of the components of the stress tensor

sijsij = (σij −
1

3
σkkδij)(σij −

1

3
σkkδij)

= σijσij −
1

3
σijσkkδij −

1

3
σkkδijσij +

1

9
σkkσkkδijδij

= σijσij −
2

3
σkkσkk +

1

3
σkkσkk

The final result is

Ū =
1 + ν

2E
(σijσij −

1

3
σkkσkk) (12.39)

In 1904 the Polish professor Maximilian Tytus Huber proposed a hypothesis that yielding

of the material occurs when the distortional energy density reaches a critical value

σijσij −
1

3
σkkσkk = C (12.40)

where C is the material constant that must be determined from tests. The calibration is

performed using the uni-axial tension test for which the components of the stress tensor are

σij =

∣∣∣∣∣∣∣
σ11 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣ (12.41)

From Eq. (12.21) we get

σ11σ11 −
1

3
σ11σ11 =

2

3
σ11σ11 = C (12.42)

Yielding occurs when σ11 = σy so C =
2

3
σ2y. The most general form of the Huber yield

condition is

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ212 + σ223 + σ231) = 2σ2y (12.43)

which was the starting point of the analysis of various special cases in section 12.4. A

similar form of the yield condition for plane stress was derived by von Mises in 1913, based

on plastic slip consideration and was later extended to the 3-D case by Hencky. The present

form is reformed to in the literature as the Huber-Mises-Hencky yield criterion, called von

Mises for short.

END OF ADVANCED TOPIC
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12.8 Tresca Yield Condition

The stress state in uni-axial tension of a bar depends on the orientation of the plane on

which the stresses are resolved. In Lecture 3 it was shown that the shear stress τ on the

plane inclined to the horizontal plane by the angle α is

τ =
1

2
σ11 sin 2α (12.44)

where σ11 is the uniaxial tensile stress, see Fig. (12.10).

σ11 

α 
τ 

σn 

σ11 

σ11 

Figure 12.10: Shear and normal stresses at an arbitrary cut.

The maximum shear occurs when sin 2α = 1 or α =
π

4
. Thus in uniaxial tension

τmax =
σ11
2

(12.45)

Extending the analysis to the 3-D case (see for example Fung) the maximum shear stresses

on three shear planes are

τ1 =
|σ1 − σ2|

2
, τ2 =

|σ2 − σ1|
2

, τ3 =
|σ3 − σ1|

2
(12.46)

where σ1, σ2, σ3 are principal stresses. In 1860 the French scientist and engineer Henri

Tresca put up a hypothesis that yielding of the material occurs when the maximum shear

stress reaches a critical value τc

τo = max

{ |σ1 − σ2|
2

,
|σ2 − σ3|

2
,
|σ3 − σ1|

2

}
(12.47)

The unknown constant can be calibrated from the uniaxial test for which Eq. (12.24) holds.

Therefore at yield τo = σy/2 and the Tresca yield condition takes the form

max {|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|} = σy (12.48)
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In the space of principal stresses the Tresca yield condition is represented by a prismatic

open-ended tube, whose intersection with the octahedral plane is a regular hexagon, see

Fig. (12.11).

σ3 

σ1 

σ2 

Octaeder plane 

Yield surface 

0 
α α 
α 

Figure 12.11: Representation of the Tresca yield condition in the space of principal stresses.

For plane stress, the intersection of the prismatic tube with the plane σ3 = 0 forms a

familiar Tresca hexagon, shown in Fig. (12.12).

σ11 

σ22 

1 

1 

-1 

-1 
Tresca Mises 

Figure 12.12: Tresca hexagon inscribed into the von Mises ellipse.

The effect of the hydrostatic pressure on yielding can be easily assessed by considering

σ1 = σ2 = σ3 = p. Then

σ1 − σ2 = 0 (12.49a)

σ2 − σ3 = 0 (12.49b)

σ3 − σ1 = 0 (12.49c)

Under this stress state both von Mises yield criterion (Eq. (??)) and the Tresca criterion

(Eq. (??)) predict that there will be no yielding.
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12.9 Experimental Validation

The validity of the von Mises and Tresca yield criteria and their comparison has been

the subject of extensive research over the past century. The easiest way to generate the

complex state of stress is to perform tension/compression/torsion tests of thin-walled tubes,

sometimes with added internal pressure. The results from the literature are collected in

Fig. (12.13) where the experimental points represent a combination of the measured two

principal stresses causing yielding. There is a fair amount of spread of the data so that

there is no clear winner between the two competing theories. After all, the physics behind

both approaches is similar: shear stresses (Tresca) produces shape distortion, and shape

distortion (von Mises) can only be achieved through the action of shear stresses (in a rotated

coordinate system). The maximum difference between the von Mises and Tresca yield curve

occurs at the transverse plane strain and is equal to (2/r3 − 1) = 0.15.

von Mises 

Tresca 

Figure 12.13: Plane stress failure loci for three criteria. These are compared with biaxial

yield data for ductile steels and aluminum alloys, and also with biaxial fracture data for

gray cast iron.

Quasi-brittle materials, such as cast iron behave differently in tension and compression.

They can be modeled by the pressure dependent or normal stress dependent (Coulomb-

Mohr) failure criterion. The comparison of theory with experimental data is shown in Fig.

(12.14).
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Compression 

Tension 

Figure 12.14: Biaxial fracture data of gray cast iron compared to various fracture criteria.

12.10 Example of the Design against First Yield

Safety of pressure vessels and piping systems is critical in design of offshore, chemical and

nuclear installation. The simplest problem in this class of structures is a thick pipe loaded

by an internal pressure p. The tube is assumed to be infinitely long and the internal and

external radii are denoted respectively by a and b. In the cylindrical coordinate system

(r, θ, z), σzz = 0 for the open-ended short tube and σrr = σr and σθθ = σθ are the principal

radial and circumferential stresses. The material is elastic up to the point of the first yield.

The objective is to determine the location where the first yield occurs and the corresponding

critical pressure py.

The governing equation is derived by writing down three groups of equations:

Geometrical relation:

εr =
d

dr
u, εθ =

u

r
(12.50)

where u is the radial component of the displacement vector, u = ur. The hoop component

is zero because of axial symmetry.

Equilibrium:
d

dr
σr +

σr − σθ
r

= 0 (12.51)
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Figure 12.15: Expansion of a thick cylinder by an internal pressure.

Elasticity law:

σr =
E

1− ν2 (εr + νεθ) (12.52a)

σθ =
E

1− ν2 (εθ + νεr) (12.52b)

There are five equations for five unknowns, σr, σθ, εr, εθ and u. Solving the above system

for u, one gets

r2
d2

dr2
u+ r

d

dr
u− u = 0 (12.53)

The solution of this equation is

u(r) = C1r +
C2

r
(12.54)

where C1 and C2 are integration constants to be determined from the boundary conditions.

The stress and displacement boundary condition for this problem are

(T − σr) = 0 or δu = 0 (12.55)

In the case of pressure loading, the stress boundary condition applies:

at r = a σr = −pa (12.56a)

at r = b σr = −pb (12.56b)

The minus sign appears because the surface traction T , which in our case is pressure loading,

acts in the opposite direction to the unit normal vectors n, see Fig. (12.15). In the present

case of internal pressure, σr(r = a) = −p and σr(r = b) = 0. The radial stress is calculated

from Eqs. (12.28) and (12.30)

σr =
E

1− ν2
[
(1 + ν)C1 − (1− ν)

C2

r2

]
(12.57)
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The integration constants can be easily calculated from two boundary conditions, and the

final solution for the stresses is

σr(r) =
a2p

b2 − a2
(

1− b2

r2

)
(12.58a)

σθ(r) =
a2p

b2 − a2
(

1 +
b2

r2

)
(12.58b)

Eliminating the term (b/r)2 between the above two equations gives the straight line profile

of the stresses, shown in Fig. (12.16).

σr + σθ = 2p
1(

b

a

)2

− 1

(12.59)

σr 

σθ 

0 

r = a 
r = b 

Figure 12.16: The stress profile across the thickness of the cylinder.

It is seen that the stress profile is entirely in the second quadrant and the tube reaches

yield at r = a, for which the stresses are

σr = −p (12.60a)

σθ = p
b2 + a2

b2 − a2 (12.60b)

In the case of the Tresca yield condition

|σθ − σr| = σy (12.61)

The dimensionless yield pressure is

p

σy
=

1

2

[
1−

(a
b

)2]
(12.62)

The von Mises yield condition predicts

p

σy
=

1− (a/b)2√
3 + (a/b)4

(12.63)
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For example, if
a

b
=

1

2
, the first yield pressure according to the von Mises yield condition is

py
σy

=
3

7
while the Tresca yield criterion predicts

py
σy

=
3

8
. The difference between the above

two cases is 14%.
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