2.081J/16.230J Plates and Shells

Homework #5 Due date: class on Monday March 20

Problem 1 A long rectangular simply supported plate is compressed between two rigid blocks.

uniform thickness, h = 10 mm

The following data for the considered steel are provided:

$$\sigma = \begin{cases} E\varepsilon & \text{for } \varepsilon < \varepsilon_y \\ K\varepsilon^{0.3} & \text{for } \varepsilon \ge \varepsilon_y \end{cases}$$

where

$$E = 210 \ GPa; \quad \nu = 0.3$$

$$K = 2.141 \ GPa$$

$$\varepsilon_y = \frac{\sigma_y}{E}; \quad \sigma_y = 300 \ MPa$$

Note that σ and ε are respectively total stress and total strain.

(a) Calculate the effective width of the plate, b_{eff} .

(b) Assume the actual width of the plate is $b = b_{eff}/2$. Determine the plastic buckling stress σ_{cr} and the total buckling load P_{cr} .

- (c) Compare the solution (σ_{cr} and P_{cr}) for $b = b_{eff}$ and $b = b_{eff}/2$.
- (d) Plot the stress distribution in both plates, $\sigma_{xx}(y)$, at the point of buckling.

Problem 2 A long cylindrical shell made of mild steel ($E = 210 \ GPa$ and $\nu = 0.3$) is stiffened in x-direction by a system of eight equally spaced stringers. This shell is subjected to axial compression.

- (a) Determine the buckling mode of the shell, (\bar{m}, n) .
- (b) Calculate the corresponding half-wave length, $\lambda.$
- (c) Determine the theoretical buckling stress, σ_{cr}