Matlab Exercises_Recitation 11

Recitation 11: Wednesday, 25 April / Friday, 27 April MATLAB Exercises_Recitation 11 due: Monday, 30 April 2012, at 5 PM by upload to Stellar

Format for upload: Students should upload to the course Stellar website a folder

YOURNAME_MatlabExercises_Rec11

which contains the completed scripts and functions for the assigned MATLAB Exercises_Recitation 11: all the scripts should be in a single file, with each script preceded by a comment line which indicates the exercise number; each function .m file should contain a comment line which indicates the exercise number.

1. In this question we ask you to create and use a function which generates a sparse triadiagonal stiffness matrix for a system of n springs and masses connected in series. We show in Figure 1 the spring-mass system for the particular case n = 3.

Figure 1: Our spring-mass system for the particular case n = 3. Here the k_i , $1 \le i \le n$, are the values of the spring constants; note the values of the masses, m_i , $1 \le i \le n$, the applied forces, f_i , $1 \le i \le n$, and the displacements, u_i , $1 \le i \le n$, are not relevant in this set of exercises.

As described in class, the *equilibrium* displacement u may be found from the matrix equation K u = f where the i^{th} row represents a force balance on the i^{th} mass. The $n \times n$ matrix K (MATLAB K) is denoted the stiffness matrix.

(a) The function

```
function [ K ] = generate_K( n, kvec )
K = spalloc(n,n,3*n);
K(1,1) = kvec(1) + kvec(2);
K(1,2) = ; % TO BE COMPLETED
for i = 2:n-1
   K(i,i) = kvec(i) + kvec(i+1);
   K(i,i+1) = -kvec(i+1);
   K(i,i-1) = ; % TO BE COMPLETED
end
```

K(n,n) = ; % TO BE COMPLETED
K(n,n-1) = -kvec(n);

end

is intended to generate, in sparse format, the tridiagonal stiffness matrix associated with n springs connected in series with respective spring constants $kvec(i) = k_i$, $1 \le i \le n$. Cut-paste the MATLAB code above and supply the correct conclusions to the three assignment statements indicated by the comment TO BE COMPLETED.

- (b) Write a four-line script which (i) invokes generate_K for n = 10 and kvec = ones(10,1)*10 to obtain K, (ii) finds the number of nonzero entries in K, (iii) verifies (visually) that K is indeed tridiagonal, and finally (iv) confirms that K is stored in sparse format. You should find the MATLAB built-in functions nnz, spy, and issparse useful.
- 2. The function

```
function [avg_time ] = timer_matvec_sparse( n, numrepeats )
kvec = ones(n,1)*n; % spring constants for a discretized uniform truss
w = randn(n,1); % a random displacement vector to test matrix-vector product
% needed for Rec 12 but not Rec 11
f = ones(n,1)/n; % body force due to gravity for a discretized uniform truss
K = generate_K(n,kvec);
tic;
for itimes = 1:numrepeats
    v = K*w;
end
avg_time = toc/numrepeats;
```

```
end
```

computes the average time (over numrepeat repetitions) to perform the *sparse* matrix-vector product K*w for the n-spring stiffness matrix K.¹

Deliverable: Write a three-line script which invokes timer_matvec_sparse (three times) to display avg_time/n for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 100.

You should observe that avg_time/n is roughly constant and thus conclude that the time required to perform the sparse matrix-vector product K*w increases roughly linearly with n.

- 3. In this question we demonstrate the advantage of sparse storage format by re-performing the timings of Question 2 but now for K converted to (and stored in) non-sparse storage format.
 - (i) Create from the function timer_matvec_sparse a new function timer_matvec_full which differs only in the introduction of one line, *before* you enter the for loop, which

¹Note the choice for kvec corresponds to a discretization of a uniform truss into n springs each associated with a small segment of the truss of length 1/n. This discretization is not relevant to our current emphasis — computational cost — but does ensure that the limit of large n (many springs) makes physical sense.

converts K from sparse to non-sparse/standard storage format. You should find the MATLAB built-in function full useful. Note that you are not changing the mathematical definition of the matrix here but rather the format in which the matrix entries are stored (or not stored) and the way in which MATLAB operates on the entries.

(ii) Write a three-line script which invokes timer_matvec_full (three times) to display avg_time/(n^2) for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 10.
You should observe that avg_time/(n^2) is roughly constant and thus conclude that the time required to perform the non-sparse matrix-vector product K*w increases roughly quadratically with n and that furthermore the non-sparse matrix-vector product is considerably more expensive than the sparse matrix-vector product.

2.086 Numerical Computation for Mechanical Engineers Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.