
Matlab Exercises Recitation 11 2.086 Spring 2012
 

Recitation 11: Wednesday, 25 April / Friday, 27 April 
Matlab Exercises Recitation 11 due: Monday, 30 April 2012, at 5 PM by upload to Stellar 

Format for upload: Students should upload to the course Stellar website a folder 

YOURNAME MatlabExercises Rec11 

which contains the completed scripts and functions for the assigned Matlab Exercises Recitation 11: 
all the scripts should be in a single file, with each script preceded by a comment line which indi
cates the exercise number; each function .m file should contain a comment line which indicates the 
exercise number. 

1. In this question we ask you to create and use a function which generates a sparse triadiagonal 
stiffness matrix for a system of n springs and masses connected in series. We show in Figure 1 
the spring-mass system for the particular case n = 3. 
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Figure 1: Our spring-mass system for the particular case n = 3. Here the ki, 1 ≤ i ≤ n, are the 
values of the spring constants; note the values of the masses, mi, 1 ≤ i ≤ n, the applied forces, fi, 
1 ≤ i ≤ n, and the displacements, ui, 1 ≤ i ≤ n, are not relevant in this set of exercises. 

As described in class, the equilibrium displacement u may be found from the matrix equation 
K u = f where the ith row represents a force balance on the ith mass. The n × n matrix K 
(Matlab K) is denoted the stiffness matrix. 

(a) The function 

function [ K ] = generate_K( n, kvec ) 

K = spalloc(n,n,3*n); 

K(1,1) = kvec(1) + kvec(2);
 
K(1,2) = ; % TO BE COMPLETED
 

for i = 2:n-1
 
K(i,i) = kvec(i) + kvec(i+1);
 
K(i,i+1) = -kvec(i+1);
 
K(i,i-1) = ; % TO BE COMPLETED
 

end 
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K(n,n) = ; % TO BE COMPLETED
 
K(n,n-1) = -kvec(n);
 

end 

is intended to generate, in sparse format , the tridiagonal stiffness matrix associated with 
n springs connected in series with respective spring constants kvec(i) = ki, 1 ≤ i ≤ n. 
Cut-paste the Matlab code above and supply the correct conclusions to the three 
assignment statements indicated by the comment TO BE COMPLETED. 

(b) Write a four-line script which (i) invokes generate_K for n = 10 and kvec = ones(10,1)*10 
to obtain K, (ii) finds the number of nonzero entries in K, (iii) verifies (visually) that 
K is indeed tridiagonal, and finally (iv) confirms that K is stored in sparse format. You 
should find the Matlab built-in functions nnz, spy, and issparse useful. 

2. The function 

function [avg_time ] = timer_matvec_sparse( n, numrepeats ) 

kvec = ones(n,1)*n; % spring constants for a discretized uniform truss 
w = randn(n,1); % a random displacement vector to test matrix-vector product 

% needed for Rec 12 but not Rec 11 
f = ones(n,1)/n; % body force due to gravity for a discretized uniform truss 

K = generate_K(n,kvec); 

tic;
 
for itimes = 1:numrepeats
 

v = K*w;
 
end
 
avg_time = toc/numrepeats;
 

end 

computes the average time (over numrepeat repetitions) to perform the sparse matrix-vector 
product K*w for the n-spring stiffness matrix K. 1 

Deliverable: Write a three-line script which invokes timer_matvec_sparse (three times) to 
display avg_time/n for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 100. 

You should observe that avg_time/n is roughly constant and thus conclude that the time 
required to perform the sparse matrix-vector product K*w increases roughly linearly with n. 

3. In this question we demonstrate the advantage of sparse storage format by re-performing the 
timings of Question 2 but now for K converted to (and stored in) non-sparse storage format. 

(i) Create from the function timer_matvec_sparse a new function timer_matvec_full 
which differs only in the introduction of one line, before you enter the for loop, which 

1Note the choice for kvec corresponds to a discretization of a uniform truss into n springs each associated with a 
small segment of the truss of length 1/n. This discretization is not relevant to our current emphasis — computational 
cost — but does ensure that the limit of large n (many springs) makes physical sense. 
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converts K from sparse to non-sparse/standard storage format. You should find the 
Matlab built-in function full useful. Note that you are not changing the mathematical 
definition of the matrix here but rather the format in which the matrix entries are stored 
(or not stored) and the way in which Matlab operates on the entries. 

(ii) Write a three-line script which invokes timer_matvec_full (three times) to display 
avg_time/(n^2) for n = 3,200, n = 6,400, and n = 12,800, and numrepeats = 10. 

You should observe that avg_time/(n^2) is roughly constant and thus conclude that 
the time required to perform the non-sparse matrix-vector product K*w increases roughly 
quadratically with n and that furthermore the non-sparse matrix-vector product is con
siderably more expensive than the sparse matrix-vector product. 
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