Matlab Exercises_Recitation 2^{\dagger}

Recitation 2: Wednesday, 15 February / Friday, 17 February MATLAB Exercises_Recitation 2 due: Tuesday, 21 February 2012 at 5 PM by upload to Stellar

Format for upload: Students should upload to the course Stellar website a folder

YOURNAME_MatlabExercises_Rec2

which contains the completed scripts and functions for the assigned MATLAB Exercises_Recitation 2: all the scripts should be in a single file, with each script preceded by a comment line which indicates the exercise number; each function .m file should contain a comment line which indicates the exercise number.

- 1. (6.094 1.2) Write a script to make the following single-index arrays. Leave off the semicolons so that your results are displayed.
 - (a) p = [3.14, 15, 9, 26]
 - (b) $r = [100, 99, 98, \dots, 2, 1]$
 - (c) $s = [0, \frac{1}{99}, \frac{2}{99}, \dots, \frac{98}{99}, 1]$

Note you should find the colon operator helpful in constructing these single-index arrays.

2. (This is an extension to Exercise 4. of Recitation 1.) Write a script which finds N* such that F_{N*} < 1000 and F_{N*+1} ≥ 1000 and also constructs the single-index array Ffib of the associated Fibonacci numbers [F₁, F₂,..., F_{N*}]. This should be a relatively simple modification to your while loop of Exercise 4. of Recitation 1: initialize (say) Ffib outside the loop, and then use horizontal concatenation to "grow" the Ffib array each time through the loop; note you can eliminate your Nstar_tmp variable from earlier and instead evaluate the length of the final Ffib array. Note a "quick and dirty" debug plot can be performed after (and outside) the loop with plot(Ffib, 'o').

Comment: When we get to double-index arrays we will emphasize the importance of initializing arrays (with zeros and later spalloc). Initialization ensures that you control the size/shape of the array and also is the most efficient way to allocate memory. On the other hand, concatenation can be very useful in dynamic contexts (in which array size may not be known *a priori*) or in situations in which a large array is most easily expressed in terms of several smaller arrays. But use concatenation sparingly in particular in computationally intensive codes.

3. Write a script to calculate the sum of a geometric series with N + 1 terms,

$$S = \sum_{i=0}^{N} r^{i} = 1 + r + r^{2} + r^{3} + \ldots + r^{N} ,$$

[†]Some of the questions were derived from *Learning* MATLAB by Tobin Driscoll, *Numerical Computing With* MATLAB by Cleve Moler, *Getting Started With* MATLAB by Rudra Pratap, *The Art of* MATLAB by Loren Shure, and the MIT 2010 IAP course 6.094; these are attributed where applicable. These exercises were initially assembled by Dr. Justin Kao.

for the particular case of N = 10 and r = 1/2. Use ones(1,N+1) to set up a single-index (row) array of all r's, the colon operator to set up a single-index array of exponents, array "dotted" operators to perform the exponentiation, and the MATLAB built-in function sum to perform the summation — no for or while loops allowed! (In fact, a single line of MATLAB code should suffice, though you may wish to break this into a few lines for improved readability.)

4. Write a script which given a vector of distinct points $xvec = [x_1, x_2, ..., x_N]$ and a point x finds the index i^* such that $x_{i^*} \leq x$ and $x_{i^*+1} > x$. You may assume that the points are ordered and distinct, $x_i < x_{i+1}$, $1 \leq i \leq N-1$, but you should not assume that the points are equidistantly spaced. You may also assume that $x_1 \leq x \leq x_N$.

To write your code, you should use array relational operators, the MATLAB built-in find, and then (say) the MATLAB built-in max (or length) — no for loops allowed.

Run your script for two cases: x = 1./sqrt(2) and xvec = 0.01*[0:100]; x = 0.5 and xvec = sort(rand(1,100)). (In each case, include these assignment statements as the first two lines of your script.)

5. (Driscoll 5.1) Write a script to do the following: On a single figure, plot the functions $\sinh x$, $\cosh x$, $\tanh x$, and e^x for $-1 \le x \le 1$, with point spacing $\Delta x = 1/10$. Make sinh a red line, $\cosh x$ dotted line, $\tanh a$ blue line with circles at each point, and e^x just green \times 's with no line. Make a legend. Label your axes and give the figure a title. Use linspace to create a vector of x values and call each MATLAB mathematical function with vector arguments to create the corresponding vector of "y" values. (See Section 5.4 of the text for a plotting "template.")

2.086 Numerical Computation for Mechanical Engineers Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.