Assignment 2 2.086 Fall 2014

Due: Tuesday, 14 October at 5 PM.

Upload your solution to course website as a zip file “YOURNAME_ASSIGNMENT_2” which includes the
script for each question as well as all MatLaB® functions (of your own creation) called by your
scripts; both scripts and functions must conform to the formats described in Instructions and
Questionsbelow.

Instructions

Download (from the course website Assignment 2 page) the Assignment_2_Templates folder. This
folder contains a template for the script associated with each question (A2Qy_Template for
Question y), as well as a template for each function which we ask you to create(func_Template
for a function func). The Assignment_2_Template folder also contains the grade_o_matic files
(please see Assignment 1 for a description of grade_o_maticl) as well as all .mat files which you will
need for Assignment 2.

We indicate here several general format and performance requirements:

“

(a.) Your script for Question y of Assignment x must be a proper MATLAB “.m” script file and
must be named AxQy.m. In some cases the script will be trivial and you may submit the
template “as is” — just remove the _Template — in your “YOURNAME_ASSIGNMENT_2 folder.
But note that you still must submit a proper AxQy .m script or grade_o_matic will not perform
correctly.

(b.) In this assignment, for each question y, we will specify inputs and outputs both for the script
A2Qy and (as is more traditional) any requested MATLAB functions; we shall denote the former
as script inputs and script outputs and the latter as function inputs and function outputs.
For each question and hence each script, and also each function, we will identify allowable
instances for the inputs — the parameter values or “parameter domains” for which the codes
must work.

(c.) Recall that for scripts, input variables must be assigned outside your script (of course before
the script is executed) — not inside your script — in the workspace; all other variables
required by the script must be defined inside the script. Hence you should test your scripts in
the following fashion: clear the workspace; assign the input variables in the workspace; run
your script. Note for MATLAB functions you need not take such precautions: all inputs and
outputs are passed through the input and output argument lists; a function enjoys a private
workspace.

(d.) We ask that in the submitted version of your scripts and functions you suppress all display
by placing a “;” at the end of each line of code. (Of course during debugging you will often
choose to display many intermediate and final results.) We also require that before you
upload your solution to course website you run grade_o_matic (from your YOURNAME_ASSIGN-

MENT _2 folder) for final confirmation that all is in order.

Note that, for display in verbose mode, grade_o_matic will “unroll” arrays and present as a row vector.



Note in Assignment 2, for each question, we encourage you to design your own code without
reference to the template. You can start with the mathematical statement of the problem and, as
appropriate, the numerical method for approximation or solution. You can then design the logic
(or “flow”) for your code: the reduction of your method to a sequence of steps — an algorithm.
Finally, you should consider the particular MATLAB implementation: the capabilities of MATLAB
which you will exploit, and the associated syntax. However, if you do need some guidance, the
template — one particular approach amongst many — can get you started.

Questions

1. (10 points) Write a script which, given a 20 x 40 array M, performs the following operations
(in sequence):

(i) creates a new 20 x 40 array, D, which is all zeros except D(i,i) = 1 for 1 < i <20 and
D(i,i+20) = 2for 1 < i < 20;

(i) creates a new 20 x 40 matrix A as the sum of the corresponding entries of arrays M and
D — for example, A(1,2) = M(1,2) + D(1,2);

(#ii) creates a new 20 x 40 array, B, which is the same as array A except row 11 for which
B(11,j) = 1/3, for 1 < j < 40;

(iv) creates a new 20 x 41 array, C, which is the same as array B for columns 1 through 40
but also includes a column 41 in which all elements are assigned the value 3;

(v) creates a new 20 x 41 array, P, which is the same as array C except the first ten entries
on the main diagonal for which P(i,i) = .1 * i * C(i,1i), for 1 <i < 10;

(vi) creates a new 20 x 41 array, Q, which is the same as array P except the (1,2) entry for
which Q(1,2) is assigned the value 7,

(vii) creates a new 20 x 41 array, R, in which each element is the square of the corresponding
element in array Q — for example, since Q(1,2) = 7 then R(1,2) = 49;

(vidi) creates a scalar bigsum which is the sum of all the elements (820 in total) of the array
R.

No functions are required for this question.

The script takes a single script input: the input is a 20 x 40 array M and must correspond
in your script to MATLAB variable M; the allowable instances, or input parameter domain,
is given by abs(M(i,j)) < 10,1 < i,j < 10. The script yields a single script output: the
output is the scalar bigsum and must correspond in your script to MATLAB (scalar) variable
bigsum.

The script template for this question is provided in A2Q1_Template.

2. (15 points) Graduate students admitted to a particular university apply for two national
fellowships, Fellowship 1 and Fellowship 2. We consider the application by any particular
student for the two fellowships a random experiment. The outcome of the experiment is
described by two variables F; and Fy. The variable Fy, related to Fellowship 1, has two
possible outcomes, Wi and Li: Wy corresponds to “win Fellowship 17 and L; corresponds to
“lose (do not win) Fellowship 1. The variable Fy, related to Fellowship 2, has two possible



outcomes, Wy and Lo: Ws corresponds to “win Fellowship 2”7 and Lo corresponds to “lose
(do not win) Fellowship 2.

You are provided with historical data in the form of a 2x 171 logical array fellowship_record
(in the file fellowship_record.mat): the two rows correspond to the two fellowships, and
the 171 columns to the 171 students who have applied for the two fellowships in the past. The
entries of fellowship_record are either a logical 0 or a logical 1: a 0 indicates “lose” and
a 1 indicates “win”. For example, the 0 in fellowship_record(1,9) indicates that student
7 did not win Fellowship 1; a 1 in fellowship_record(2,11) indicates that student 11 did
win Fellowship 2.

We would like you to write a script which, on the basis of the fellowship_record data
(n = 171), calculates ¢, (W1, Wa), @n(L1, L2), pn(Wa), and ¢, (Ws | W7), where the nota-
tion is adopted from the nutshell Introduction to Probability and Statistics. There are no
script inputs. The script outputs are four scalar variables: phiWiW2, which corresponds to
on (W1, W3); phiL1L2, which corresponds to ¢, (L1, La); phiW2, which corresponds to ¢, (Ws);
and phiW2barW1, which corresponds to (W | Wh).

The script template for this question is provided in A2Q2_Template.

. (10 points) A multiple-choice quiz comprises three questions. A 3x2 array quest_attributes
describes the questions: the three rows correspond to the three questions; the first column
corresponds to the number of multiple-choice options (amongst which there is one, and only
one, correct response); the second column corresponds to the number of points. For example,
a 3 in quest_attributes(2,1) indicates that in the second question there are three multiple
choice options; a 20 in question_attributes(3,2) indicates that the third question is worth
20 points. Note that the entries in the second column of quest_attributes sum to 100.

We would like to analyze the anticipated performance of a guesser. You may assume that
a guesser will choose any of the multiple-choice options for a particular question with equal
likelihood; your may further assume that the guesser treats each question as independent (in
the probabilistic sense). You may thus describe the guesser procedure by an appropriate trio
of independent Bernoulli random variables.

We would like you to write a function which, given an array quest_attributes, calculates
Pallright, the probability that a guesser answers all of the questions correctly, paticastonerights
the probability that a guesser answers at least one of the questions correctly, and finally
Npointsearned, the expectation of the total number of points (over all three questions) which
will be earned by a guesser.

Your function should have “signature”

function [p_all,p_atleastone,N_points] = guesser_Q3(quest_attributes)

with a single function input and three function outputs. We emphasize that the function
must be named guesser_Q3 and furthermore must be stored in a file named guesser_Q3.m.
The function takes a single function input: the 3 x 2 array quest_attributes described
above; allowable instances are, for entries in the first column, non-negative integers, and for
entries in the second column, non-negative entries which sum to 100. The function yields
three function outputs, all scalar variables: p_all corresponds to paiignt; p-atleastone
corresponds to Patleastoneright; N_points corresponds to Npgintsearned-



The script template for this question is provided in A2Q3_Template; no modifications are
required (except to remove the _Template from the name). The function template is provided
in guesser_Q3_Template.m; note for function templates (as well as script templates) you
should first “save as” with _Template removed from the name.

. (15 points) A baseball player at the plate may be modeled as a random variable V' which
represents the base the player will attain as a result of a particular “up.” The sample space
for V' is {0,1,2, 3,4}, where a 0 corresponds to an “out” (by any means), a 1 to a single or a
walk or a hit-by-pitch, a 2 to a double, a 3 to a triple, and a 4 to a home run. (We do not
consider subtleties, for example related to stolen bases or sacrifices or errors or balks.) If you
do not know anything about baseball, you may disregard this introduction and proceed to
the abstraction below.

The probability mass function for the random variable V is given by

pr v=20
p2 v=1
fr(v) =9 p3 v=2 , (1)
py v=3
ps v=4

where as always the 0 < p; <1,1 <¢ <5, and Z?lei =1.

We would like you to develop a function which generates a pseudo-random sample realization
of V of size n based on the “continuous uniform to discrete” transformation described in the
nutshell Random Variables. (Note this sample realization can in turn be integrated into a
“line-up” to simulate, very crudely, a baseball game.)

Your function should have “signature”

function [v_variates_vec] = base_attained_Q4(p_vec,n)

with a single function input and a single function output. We emphasize that the func-
tion must be named base_attained_Q4 and furthermore must be stored in a file named
base_attained_Q4.m. The function takes two function inputs. The first function input is a
1 x5 array p_vec for which p_vec(i) =p;i,i=1,...,5, as defined above; allowable instances
are any p;, 1 <14 <5, which satisfy the usual probability requirements. The second function
input is n, which corresponds to n, the size of the pseudo-random sample realization; the
allowable instances are n € {10,11,...,100000}. The single function output is the 1 x n array
v_variates_vec which corresponds to the pseudo-random sample realization of V. Note that
v_variates_vec must be random not just in terms of the outcome frequencies but also in
terms of the order — such that (say) the first n/2 elements of v_variates_vec, or the last
n/2 elements of v_variates_vec, or the “middle” n/2 elements of v_variates_vec, should
also yield (approximately) the correct outcome frequencies.

The script template for this question is provided in A2Q4_Template; no modifications are
required (except to remove the _Template from the name). The function template is provided
in base_attained_Q4_Template.m; note for function templates (as well as script templates)
you should first “save as” with _Template removed from the name.

. (15 points) The (univariate) normal density is often a good and also convenient description of
the outcome of a random phenomenon. However, in the case in which the outcome must be



positive (on physical grounds, for example a spring constant), a normal random variable —
which can in principle take on all values negative and positive — can create difficulties. In the
case in which negative values are very rare, we can justifiably consider a “rectified” normal
random variable: a zero or negative value is rejected and we draw again from the desired
normal population until we obtain a positive value. (Note this procedure creates a density
which (is zero for negative values and) has the same shape as the normal density for positive
values but is uniformly amplified to integrate to unity over the positive real numbers.)

We would like you to write a function which provides, based on the procedure described
above, a pseudo-random sample of size n of rectified normal random variables associated
with a normal population with mean mu and standard deviation sigma (note the mean and
standard deviation are defined for the normal random variables before rectification).

Your function should have signature

function [xpts_pos] = positive_normal (mu,sigma,n)

with three function inputs and a single function output. We emphasize that the func-
tion must be named positive_normal and furthermore must be stored in a file named
positive_normal.m. The function takes three function inputs. The first two inputs, re-
spectively mu and sigma, are scalars; the allowable instances, or parameter domain, is 0.2 <
mu < 2.0 and 0.05 < sigma < 2*mu. The input n is a scalar integer; the allowable instances, or
parameter domain, is n € {10,11,...,100000}. The function yields a single function output:
the output is the 1xn row vector xpts_pos, which is our pseudo-random sample realiza-
tion. Note that xpts_pos must be random not just in terms of the outcome frequencies
but also in terms of the order — such that (say) the first n/2 elements of xpts_pos, or the
last n/2 elements of xpts_pos, or the “middle” n/2 elements of xpts_pos, should also yield
(approximately) the correct outcome frequencies.

The script for this question is provided in A2Q5_Template; no modifications are required
(except to remove the _Template from the name). The function template is provided in
positive_normal_Template.m; note for function templates (as well as script templates) you
should first “save as” with _Template removed from the name.

You may find the MATLAB built-in hist useful for debugging purposes, but please do not
include this display in your script or function (rather, apply hist to xpts_pos directly from
the command window).

. (10 points) A spring for a micro-robot suspension is required to have a spring constant k
between kjower = 2000 N/m and kypper = 2500 N/m in order to provide the right balance
between isolation (of the cargo) and control for navigation. The robot manufacturer receives
a batch of springs from the spring supplier and proceeds to measure the spring stiffness of
n = 10000 randomly chosen springs from the batch. It is found that, of these 10000 springs,
9851 of the springs do indeed have a spring constant within the desired range — between 2000
N/m and 2500 N/m; the remaining 149 springs have a spring constant outside the desired
range.

To model this situation we introduce a Bernoulli random variable B: a spring constant outside
the desirable range — K > Kypper 0r K < Kjower — is encoded as B = 0 and occurs with
probability 1 — 6; a spring constant inside the desirable range — Kiower < K < kupper —
is encoded as B = 1 and occurs with probability #. Here K is the random variable which



represents the spring constant and which in turn defines the Bernoulli random variable. We
wish to determine the parameter 6 from our sample of 10000 randomly chosen springs.

(i) (4 points) Based on the experimental data from the sample of n = 10000 springs, the

sample-mean estimate for 6, 6, is

(a) 0.0149

(b) 9851
(¢) 0.9870
(d) 0.9851

(i) (4 points) Based on the experimental data from the sample of n = 10000 springs, the
(two-sided) normal-approximation confidence interval for 6 at confidence level v = 0.95

1S

a) [0.9800,0.9940]
b) [0.9825,0.9873
c) |

)

0.9701, 0.9850]

d) can not be evaluated as the normal-approximation criterion (see nutshell Random
Variables) is not satisfied

(
(
(
(

(#ii) (2 points) A value for € less than 0.97 requires the spring supplier to pay the robot
manufacturer a penalty, whereas a value for 6 greater than 0.99 requires the robot
manufacturer to pay the spring supplier a premium. From your result of part (ii) can
you conclude with confidence level 0.95 that 0.97 < 8 < 0.997

(a) Yes
(b) No
Note you may assume here that our random model for the spring constant K and hence

Bernoulli variable B is valid (as only in this case can you make rigorous statistical
inferences).

The template A2Q6_Template.m contains the multiple-choice format required by grade_o_matic.

. (15 points) We would like you to write a function which computes, based on the method
described in nutshell Monte Carlo Integration, a Monte Carlo estimate (121 D)n, and associated
95% confidence-level (normal-approximation two-sided) confidence interval [cig, ], for the
area of the region

D= {2? +23 <075} U{(x1 — 2)* + 23 < 0.75} . (2)

Note that D is the union of two circles in which the center of the second circle is shifted by
a (in z1) from the center of the first circle. We choose for our background rectangle R the
square [—c, c]? for ¢ sufficiently large to enclose D.

Your function should have signature

function [area_est,area_conf_int] = MC_area(alpha,c,n,xlpts,x2pts)



with five function inputs and two function outputs. We emphasize that your function must
be named MC_area and furthermore must be stored in a file named MC_area.m. The function
takes five function inputs. The first input, scalar alpha, is the center shift «; the allowable
instances, or parameter domain, is 0 < alpha < 0.1. The second input, the scalar ¢ (= ¢
above), defines the bounding square R: the lower left corner of R is (z1,x2) = (-c,-c) and
the upper right corner of R is (x1,22) = (c,c); the allowable instances are 1 < ¢ < 10. (Note
for these instances of ¢ the domain D is indeed included in R for all allowable instances
of alpha.) The third input is scalar integer n, the number of random darts; the allowable
instances, or parameter domain, is n € {10,11,...,100000}. The fourth and fifth inputs are
the coordinates of the n random darts, (x1pts(i),x2pts(i)), i € {1,2,...n}, thrown at
the square R — on the basis of which you will calculate your area estimate and associated
confidence interval: x1pts and x2pts are each 1x n arrays of i.i.d. pseudo-random variates
from the (univariate) continuous uniform distribution over the interval —c¢ < x1 < ¢; there
are no restrictions on allowable instances (as the number of darts is already controlled by
n). The function yields two function outputs: the first output is a scalar area_est which
is the Monte-Carlo estimate for the area, (AD)n§ the second output is the 1 x 2 row vector
area_conf_int such that area_conf_int(1) and area_conf_int(2) are respectively the
lower and upper limits of the confidence interval [cia,,]n.

Three further points: First, in the event that the normal-approximation criterion for the
construction of the confidence interval is not satisfied your code should return [-1, 1] for
area_conf_int. Second, you should set z, = 1.96 which corresponds to confidence level
~v = 0.95. Third, in order to test your function MC_area for any desired (alpha and) ¢ and n
you must first generate the random darts x1pts,x2pts outside your function. Note, however,
that for purposes of grading, grade_o_matic will automatically generate appropriate inputs
x1lpts,x2pts for your function — no action needed on your part.

The script for this question is provided in A2Q7_Template; no modifications are required
(except to remove the _Template from the name). The function template is provided in
MC_area_Template.m; note for function templates (as well as script templates) you should
first “save as” with _Template removed from the name.

(10 points) We would like you to write a function which computes, based on the sample-mean
method described in nutshell Monte Carlo Integration, a Monte Carlo estimate I, for the
integral

= 7Tsin2 x)dx .
1_/0 (100z) d (3)

Note that the interval of integration is (a = 0,b = 7). It is no secret that I = 7/2.

Your function should have signature

function [int_est] = sample_mean_integral_Q8(n,upts)

which takes two function inputs and yields one function output. We emphasize that your
function must be named sample_mean_integral_ Q8 and furthermore must be stored in a
file named sample_mean_integral_Q8.m. The function takes two function inputs. This first
input is scalar integer n, the size of the random sample upts; the allowable instances, or
parameter domain, is n € {10,11,...,100000}. The second input is the 1x n array upts of
ii.d. pseudo-random variates from the (univariate) continuous uniform distribution over the



interval (0,1) — the sample realization on the basis of which, through transformations, you
will compute I,; there are no restrictions on allowable instances (apart from the restriction
on n). The function yields a single function output: the scalar int_est, which is the sample-
mean estimate for I, I,.

One further point: In order to test your function int_est you must first generate the
random sample upts outside your function. Note, however, that for purposes of grading,
grade_o_matic will automatically generate appropriate inputs upts for your function — no
action needed on your part. Attention: upts is drawn from the continuous uniform distri-
bution over the interval (0, 1); inside your function you must transform these pseudo-random
variates to the correct interval as required in the integral (3).

The script for this question is provided in A2Q8_Template; no modifications are required
(except to remove the _Template from the name). The function template is provided in
sample_mean_integral_Q8_Template.m; note for function templates (as well as script tem-
plates) you should first “save as” with _Template removed from the name.



MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



