
Assignment 4 2.086 Fall 2014

Due: Wednesday, 19 November at 5 PM.

Upload your solution to course website as a zip file “YOURNAME_ASSIGNMENT_4” which includes the
script for each question as well as all Matlab functions (of your own creation) called by your
scripts; both scripts and functions must conform

®
to the formats described in Instructions and

Questions below.

Instructions

Download (from the course website Assignment 4 page) the Assignment_4_Templates folder. This
folder contains a template for the script associated with each question (A4Qy_Template for Question
y), as well as a template for each function which we ask you to create (func_Template for a function
func). The Assignment_4_Templates folder also contains the grade_o_matic files for Assignment 4
(please see Assignment 1 for a description of grade_o_matic1) as well as all .mat files which you will
need for Assignment 4.

We indicate here several general format and performance requirements:

(a.) Your script for Question y of Assignment x must be a proper Matlab “.m” script file and
must be named AxQy.m. In some cases the script will be trivial and you may submit the
template “as is” — just remove the _Template — in your YOURNAME_ASSIGNMENT_4 folder.
But note that you still must submit a proper AxQy.m script or grade_o_matic will not perform
correctly.

(b.) In this assignment, for each question y, we will specify inputs and outputs both for the script
A4Qy and (as is more traditional) any requested Matlab functions; we shall denote the former
as script inputs and script outputs and the latter as function inputs and function outputs.
For each question and hence each script, and also each function, we will identify allowable
instances for the inputs — the parameter values or “parameter domains” for which the codes
must work.

(c.) Recall that for scripts, input variables must be assigned outside your script (of course before
the script is executed) — not inside your script — in the workspace; all other variables
required by the script must be defined inside the script. Hence you should test your scripts in
the following fashion: clear the workspace; assign the input variables in the workspace; run
your script. Note for Matlab functions you need not take such precautions: all inputs and
outputs are passed through the input and output argument lists; a function enjoys a private
workspace.

(d.) We ask that in the submitted version of your scripts and functions you suppress all display
by placing a “;” at the end of each line of code. (Of course during debugging you will often
choose to display many intermediate and final results.) We also require that before you
upload your solution to course website you run grade_o_matic (from your YOURNAME_ASSIGN-
MENT_4 folder) for final confirmation that all is in order.

1Note that, for display in verbose mode, grade_o_matic will “unroll” arrays and present as a row vector.

1

Note that, in Assignment 4, the templates provide rather little in the way of hints: you must
largely design your own code. You can start with the mathematical statement of the problem and,
as appropriate, the numerical method for approximation or estimation or solution. You can then
design the logic (or “flow”) for your code: the reduction of your method to a sequence of steps —
an algorithm. Finally, you should consider the particular Matlab implementation: the capabilities
of Matlab which you will exploit, and the associated syntax and “built-in” functions.

·

Questions

1. (10 points) This question is intended to exercise the concept of passing one Matlab function
— more precisely, a function handle — as an input argument to another Matlab function.
As the vehicle, we will ask you to write a Matlab function which implements the rectangle,
right integration rule to calculate an approximation, Ih, to the integral∫ xmax

I = f(x) dx , (1)
xmin

for any given function f of interest. We ask that you consider a discretization of the interval
(xmin, xmax) defined by equispaced points, xmin ≡ x1, x2, . . . , xN ≡ xmax: for h = (xmax −
xmin)/(N − 1), points xi = xmin + (i − 1)h, 1 ≤ i ≤ N , induce segments of length h, Si =
(xi, xi+1), 1 ≤ i ≤ N − 1. (See the nutshell Integration for a full description of the rectangle,
right rule.)

In particular, we ask you to create a function rect_right_rule with signature2

function [I_h]=rect_right_rule(integrand_func,x_min,x_max,N)

which evaluates Ih for any given function f , embodied in the function integrand_func, limits
of integration x_min and x_max, and number of discretization points N.

The function rect_right_rule takes four function inputs: integrand_func, x_min, x_max,
and N. The first argument to rect_right_rule, integrand_func, is a function handle for
the (Matlab embodiment of the) function f to be integrated. Note that Matlab func-
tion integrand_func is the implementation of the mathematical function f in the sense that
integrand_func(x) = f(x). The Matlab function integrand_func may be provided in sev-
eral forms, as described in the Appendix. In all cases, the function integrand_func must take
a single function input, x_vec, and yield a single output, f_vec = integrand_func(x_vec):
the input x_vec is a M × 1 array of real numbers, for 2 ≤ M ≤ 10000; the output y_vec

is the M × 1 array with entries y_vec(i) = f(x_vec(i)), i= 1, . . . ,M . The second and
third inputs to rect_right_rule are, respectively, xmin (Matlab scalar x_min), the lower
limit of the integration, and xmax (Matlab scalar x_max), the upper limit of the integration;
the input parameters x_min and x_max must be real numbers and satisfy x_min <x_max.
The fourth argument is N (Matlab scalar N), the number of points in our discretization;
allowable instances must satisfy 2 ≤ N ≤ 10000.

2 We recall that the particular names chosen for the inputs and outputs in the function signature/body of a
function are not important: it is only the number and order of the inputs and outputs which matters to ensure
correct instantiation of the function inputs, and correct assignment of the function outputs, when the function is
called by another program. (In contrast, in a script, which does not have a private workspace, the specific names of
the variables are important.)

2

This function rect_right_rule has a single function output, Ih (Matlab I_h), which is the
rectangle, right rule approximation of the integral I defined in (1). Recall that we consider the
particular case of equispaced points and hence equisized segments.

A script template is provided in A4Q1_Template: you should not modify this template; you
must only remove the _Template and upload in your YOURNAME_ASSIGNMENT_4 folder. We
also provide a function template in rect_right_rule_Template. We emphasize that your
function rect_right_rule should perform correctly for any set of inputs (and hence any
admissible function, integrand_func). You should yourself devise several test cases for which
you can anticipate the correct answers and hence test rect_right_rule; we provide some
suggestions in the Appendix. Note the only deliverables for this problem are your script A4Q1
and your function rect_right_rule. In particular, any integrand_func functions which
you create to test your rect_right_rule code are for your own purposes and should not be
uploaded in YOURNAME_ASSIGNMENT_4; grade_o_matic will create its own instances (unknown
to you) of “integrand_func” with which to test your rect_right_rule code.

2. (20 points) We consider here the scalar first-order ODE IVP du

 dt
= λu+ f(t), 0 < t ≤ tf

u(t = 0) = u0

, (2)

for λ ≤ 0. We recall that this equation is the lumped model for the temperature evolution of
a body: u is the temperature (measured relative to ambient temperature), in ◦C; u0 is the
initial temperature (measured relative to ambient temperature), in ◦C; λ is the (negative of
the) heat transfer coefficient times the surface area of the body divided by the heat capacity
of the body, in units of s−1 (−λ is hence the inverse time constant of our first-order system);
and f(t) is the heat generation (in Watts) divided by the heat capacity of the body, in units of
◦Cs−1. We note that λ is non-positive. The Euler Backward discretization of (2) will yield an
approximate solution u˜j = u˜(j ∆t)(≈ u(j ∆t)), 0 ≤ j ≤ J, for ∆t = tf /J.

In this question we would like you to implement the Euler Backward method in a Matlab
function with signature

function [u_vec] = Euler_Backward(u_0,lambda,f_source,t_final,J)

in order to obtain the approximate temperature history of the body, u_vec(j) = ũ((j-1)∆t),
1 ≤ j ≤ J+1, for prescribed initial condition u_0, parameter lambda, “source” function
f_source, and final time t_final (= tf).

The function must be named Euler_Backward and furthermore must be stored in a file
named Euler_Backward.m. The function takes five function inputs. The first input is u0
(Matlab scalar u_0), the initial condition in (2); the set of allowable instances, or parameter
domain, is not restricted (any finite value is admissible). The second input is λ (Matlab scalar
lambda), the inverse time constant in (2); the set of allowable instances, or parameter domain,
is the non-positive real numbers. The third input is the Matlab function f_source which
“implements” the source function f(t) in (2) in the sense that f_source(t) = f(t). The
function f_source must take a single input t_vec and yield a single output, f_vec: the input
t_vec is a real M × 1 array; the output f_vec is the M × 1 array with entries f_vec

3

(i)= f(t_vec(i)), 1 ≤ i ≤ M. The fourth input is the tf (Matlab scalar t_final), the final
time of integration in (2); the set of allowable instances, or parameter domain, is the positive
real numbers (since our initial time here is, for simplicity, fixed as zero). The fifth input is the
J (Matlab scalar J), the number of intervals in the Euler Backward discretization; the set
of allowable instances, or parameter domain, is the positive integers. (Note that ∆t is not an
input but rather should be calculated (within your function Euler_Backward) as ∆t ≡ tf/J .)
The function yields a single function output: the output is u˜(j ∆t), 0 ≤ j ≤ J (Matlab J+1 ×
1 array u_vec), approximate solution to our ODE IVP.3

A script template is provided in A4Q2_Template: you should not modify this template; you
must only remove the _Template and upload in your YOURNAME_ASSIGNMENT_4 folder. We also
provide a function template in Euler_Backward_Template. We emphasize that your function
Euler_Backward should perform correctly for any set of inputs (and hence any admissible
function f_source). You should yourself devise several test cases for which you can anticipate
the correct answers and hence test Euler_Backward. Note the only deliverables for this prob-
lem are your script A4Q2 and your Euler_Backward function. In particular, any “f_source”
functions which you create — named or anonymous — to test your Euler_Backward code are
for your own purposes and should not be uploaded in YOURNAME_ASSIGNMENT_4; grade_o_matic
will create its own instances (unknown to you) of “f_source” with which to test your
Euler_Backward code.

3. (20 points)

Figure 1: A ball falling under the action of gravity and subject to aerodynamic drag.

We consider the trajectory of a spherical ball falling under the action of gravity, as shown in
Figure 1. We choose our coordinate system such that the acceleration of gravity is given by
−gez for g = 9.81 m/s. The position (height) of the ball as a function of time t, relative to
the ground at z = 0, is then denoted Z(t)ez. The position Z(t) can be reasonably described

3Note it may be helpful for debugging purposes to plot your solution; this may be effected as
plot(linspace(0,t_final,J+1)',u_vec).

4

by the second-order ODE IVP d2Z
dt2

+ α
dZ

dt

∣∣∣∣dZdt
∣∣∣∣ = −g, 0 < t ≤ tf

Z(0) = Z0,
dZ

; (3)

˙(0) = Z0
dt

˙we shall consider initial conditions Z0, Z0 and final times tf such that Z(t) > 0 for all 0 < t ≤
tf . The first and third terms in the ODE should look familiar; the second term, αdZdt

∣∣dZ ∣∣,dt
models the effect of aerodynamic drag on the ball. The parameter α, related to the “ballistic
coefficient,” is given by

1

α ≡ 2 CD ρair Afrontal
,

m

where CD is the drag coefficient, ρair is the density of air, Afrontal is the projected area of
the ball in the direction of motion (hence A 2

frontal ≡ πrball, for rball the radius of the ball),
and m is the mass of the ball. (We presume the density of the ball is large compared to the
density of the air.) We shall consider the high–Reynolds numbers flow regime for which the
drag coefficient CD is relatively insensitive to velocity and furthermore roughly equal to 1/2.
We shall measure time in seconds (s) and position Z in meters (m); the units of α are then
m−1.

We denote our state variable as w ≡ (w1 w2)
T for w1 ≡ Z and w2 ≡ dZ . It is then possibledt

to express (3) as  dw 1
dt

= g1(t, w, α)

dw2

dt
= g2(t, w, α)

, 0 ≤ t ≤ tf , (4)

or even more succinctly as
dw

= g(t, w, α) , 0 ≤ t ≤ tf , (5)
dt

where g(t, w, α) ≡ (g1(t, w, α) g2(t, w, α))T. You will need to derive the form of g(t, w, α)
from (3). We provide w with the initial conditions prescribed in the problem statement,

˙w(t = 0) ≡ (Z0 Z0)
T . (6)

We would like you to write a script which solves (approximately) (5) with the Matlab

 function ode45.

Your script must take three script inputs. The first script input is the coefficient α, which must
correspond in your script to Matlab scalar variable alpha; the set of allowable instances,
or parameter domain, is 0 ≤ α ≤ 2000. The second input is the position and velocity of

˙the ball at release, (Z0, Z0), which must correspond in your script to Matlab 2 × 1 array
w_0 ˙; allowable instances must satisfy .5 ≤ Z0 ≤ 4.0 m and −2 ≤ Z0 ≤ 2. The third input is
the final time tf , which must correspond in your script to Matlab scalar variable t_final;
the set of allowable instances, or parameter domain, is .2 ≤ tf ≤ 20. The script yields a
single script output: the output is the ode45 approximation to Z(tf) — the position of the
particle at the final time — which must correspond in your script to the Matlab variable
Z_at_t_final.

5

The Matlab ode45 code (which you will call from within your script A4Q3) will require, in
addition to the three script inputs to A4Q3 described above, a Matlab anonymous function
@(t,w) which implements the “dynamics” g(t, w, α) of (5) for the given script input α. We

suggest that you first create a standard named Matlab function g_falling_ball(t,w,alpha)

which implements g(t, w, α); then, directly in the input list of your call to ode45, you form the
anonymous function @(t,w)g_falling_ball(t,w,alpha). (You can not simply call ode45
with g_falling_ball as then alpha will not be specified.)

A template for the script for this question is provided in A4Q3_Template; we also provide a
function template in g_falling_ball_Template. For this question you must upload in your
YOURNAME_ASSIGNMENT_4 folder both your script A4Q3 and your function g_falling_ball;
grade_o_matic_A4 will not provide the g_falling_ball function.

The Last Instance. In this question there are three grade_o_matic grader input instances:
the first two are each worth 5 points, the third is worth 10 points, for a total of 20 points.
There are only two student input instances, in particular, the first two grader instances.
However, we give you here an alternative fashion by which to (more or less) confirm that, for
the third grader instance, your code yields the correct output: comparison with experiment.

We again invoke the falling ball experimental data — height as a function of time t for
exp0 < t ≤ t ≡ 0.6 s — developed by Dr James Penn. Dr Masa Yano has performed af

opt ˙ optnonlinear least squares procedure on the data to obtain optimal values of Z0 , Z0 , and
 αopt for which the corresponding solution to (3), Z(t), very well replicates the experiment:

opt ˙ opt opt −1 ˙ optZ0 = 1.997 m, Z0 = −0.428 m/s, and α = 0.0444 m . The non-zero value of Z0

reflects an actual release time a fraction of a second prior to time t = 0. The value of αopt can
in fact be independently reproduced, to within several percent, from first principles. We can
thus be reasonably confident that there is a physical basis for the optimal parameter values
obtained.

The script The_Last_Instance_Q3.m plots three quantities as a function of time for 0 < t ≤
exptf = tf ≡ 0.6 s: the experimental measurements; Z(t) of (3) for the optimal (physical)

˙parameters Z0 = 1.997 m, Z 0 = −0.428 m/s, α = 0.0444 m−1, and tf = 0.6 s as predicted by
your script A4Q3 — which we denote “simulation: drag included”; and the solution to (3)

˙for the good initial height and velocity, Z0 = 1.997 m, Z0 = −0.428 m/s, but α set to zero
— which we denote “simulation: drag neglected.” (Note the drag-neglected solution can be
expressed in closed form: Z(t) = 1.997− 0.428t− (1/2)gt2.) We also directly plot your script
output as the point (0.6 s, Z_at_t_final). In all cases we take for the magnitude of the
acceleration gravity g = 9.81 m/s.

It is very good evidence that your code is correctly predicting the output for the third
grader input instance if the “simulation: drag included” results in the figure produced by
The_Last_Instance_Q3 lie directly on top of the experimental measurements. You will also
notice that, as expected, the “simulation: drag neglected” result is noticeably below the
experimental measurements.

4. (5 points) In this question we would like you to reconsider Question 3 but now apply, in the
place of ode45, the Matlab ODE integrator ode23s. In other words, this question, Question
4, is exactly Question 3 but now with “ode45” replaced everywhere by “ode23s”. Note you
need not in any way change g_falling_ball.

A template for the script for this question is provided in A4Q4_Template — though in fact it
is better that you take as your point of departure A4Q3, which then requires only very minor

6

modification to form A4Q4. Note your Question 4 you need only upload your script A4Q4 since
you will have already provided function g_falling_ball in YOURNAME_ASSIGNMENT_4 folder
as part of the deliverable for Question 3.

Elective Exercise: (0 points) The (grader, and student) grade_o_matic input instances
are the same for Question 3 and Question 4. You should find in Question 3, for the second
(student) input instance, that many time steps are required by ode45. In contrast, you should
find in Question 4, for this same second (student) input instance, that very few time steps are
required by ode23s (to obtain roughly the same accuracy). Can you explain this difference?
Note that in the second input instance α = 1000. Hint: You may wish to look at the temporal
evolution of dZ , the ball velocity, in particular for very short times.dt

5. (25 points) We consider the motion of a particle in an air flow in two space dimensions, as
shown in Figure 2. We denote the particle position as a function of time t by the 2-vector
(X(t), Y (t)) which we can also express as X(t)ex + Y (t)ey for ex and ey the unit vectors
associated with the x and y Cartesian coordinates, respectively. We denote the prescribed
steady fluid velocity field by the 2-vector U(x, y) ≡ (Ux(x, y), Uy(x, y)) which we can also
express as U(x, y) = Ux(x, y)ex +Uy(x, y)ey. It is important to note that (X(t), Y (t)) is the
position of the particle at time t — a particular point in space — whereas (Ux(x, y), Uy(x, y))
is the velocity field — the (steady) fluid velocity vector at all points (x, y) in space.

Figure 2: A particle at position (X(t), Y (t)) in an air flowfield U(x, y).

The motion of the particle can be reasonably described by the pair of coupled second-order
ODE IVPs

 d2
X



dt2
+ α ∆Ux |∆U| = 0,

d2Y
0 < t ≤ tf , (7)

+ α ∆Uy |∆U| = 0
dt2

subject to initial conditions

dX
X(0) = X0,

dt
(0) = Ẋ0 ; Y (0) = Y0,

dY ˙(0) = Y0 . (8)
dt

Here α, related to the ballistic coefficient, is the ratio of drag forces to inertial effects , and

7

|∆U| is the velocity difference vector(
dX

∆U(t) ≡ (∆Ux,∆Uy) ≡
dt
− Ux(X(t), Y (t)) ,

dY

dt
− Uy(X(t), Y (t))

)
.

In words, and as depicted in Figure 2, ∆U(t) is the different between the velocity (vector) of
the particle and the velocity (vector) of the fluid at the particular point in space at which the
particle is located at time t, (X(t), Y (t)). At higher Reynolds number, the drag force is
proportional to the square of the magnitude of ∆U, |∆U|2 (which we can also write as‖∆U‖2),
and in the direction −∆U, as summarized in (7).4

We make several remarks about this model. Prediction of the motion of particles in flows
is important in many technological applications such as industrial separators (and, more
mundanely, vacuum cleaners). For simplicity we do not include gravity in our model, though in
actual practice “settling” (say in the third direction) can play an important role in separation
applications. Our model for the forces on the particle is reasonable under certain assumptions:
the density of the particle should be large compared to the density of air (such that we may
ignore buoyancy); the particle should be of size small compared to the length scale over which
the flow field varies (such that we may ignore unsteady drag effects). Finally, we note that (7)
is nondimensionalized based on a characteristic length scale and characteristic velocity scale
associated with the fluid flow.

We denote our state variable as w ≡ (w1 w2 w3 w4)
T for w1 ≡ X, w2 ≡ dX

dt , w3 ≡ Y ,

w4 ≡ dY
dt . It is then possible to express (7) as dw 1

dt
= g1(t, w, α,U)

dw2

dt
= g2(t, w, α,U)

dw3

dt
= g3(t, w, α,U)

dw4

0 < t ≤ tf , (9)

= g4(t, w, α,U)
dt

or even more succinctly as

dw
= g(t, w, α,U) , 0 ≤ t ≤ tf , (10)

dt

where g(t, w, α, U) ≡ (g1(t, w, α, U) g2(t, w, α, U) g3(t, w, α, U) g4(t, w, α, U))T; you will need
to derive the form of g(t, w, α, U) from (7). We provide w with the initial conditions prescribed
in the problem statement,

˙w(t = 0) ≡ ˙(X0 X0 Y0 Y0)
T . (11)

In fact, we shall exclusively consider a particular form of the initial conditions (11) in which the
initial partial velocity is the velocity of the fluid at (x, y) = (X0, Y0),

w(t = 0) ≡ (X0 Ux(X0, Y0) Y0 Uy(X0, Y0))
T . (12)

4Note that for smaller particles and slower flows, we can replace our quadratic drag model with a linear Stokes
model.

8

Our interest is the trajectory of the particle but more particularly in√
Rf ≡ (X(tf))2 + (Y (tf))2 , (13)

which is the distance of the particle from the origin at the final time.

We would like you to write a “driver” function with signature

function [final_radial_position] = ...

driver_func_Q5(alpha,X_0,Y_0,t_final,Flowfield,vis_true)

which solves (approximately) (10) with the Matlab built-in function ode45 to yield the
final_radial_position for given parameter alpha, initial particle location (X_0,Y_0), final

time t_final, and fluid velocity field U (embodied in Matlab function Flowfield). (The

final input, vis_true will allow you to visualize your solution if you are so inclined. The
visualization includes the particle trajectory but also flow streamlines, which you can interpret
as the trajectory of fluid elements. The visualization capability was developed in collaboration
with Dr Masa Yano.)

Your function driver_func_Q5 will take six function inputs. The first input is the parameter

α (Matlab scalar variable alpha); the set of allowable instances, or parameter domain, is
.01 ≤ α ≤ 10. The second and third inputs are the position in x and y of the particle at

release, X0 and Y0 (Matlab scalar variables X_0 and Y_0, respectively); the set of allowable
instances, or parameter domain, is −6 ≤ X0 ≤ 2 and −1 ≤ Y0 ≤ 1. The fourth input is
the scalar final time tf (Matlab scalar variable t_final); the set of allowable instances, or
parameter domain, is .1 ≤ tf ≤ 150. The fifth input is the Matlab function Flowfield
which implements the fluid velocity field U in the sense that Flowfield(x,y) = U(x,y). The
function Flowfield must take two inputs, x and y, and yield a single output, Vel_Vect: the

inputs x and y are each scalars; the output Vel_Vect is the 1×2 array [Ux(x,y), Uy(x,y)]. The
sixth and final input, vis_true, is a logical Matlab variable which, if set to true, provides
a plot of the particle trajectory; this capability is included solely for your viewing pleasure
and perhaps debugging assistance. Note that grade_o_matic will set vis_true = true. The
function driver_func_Q5 yields a single output: this single output is Rf of (13) (Matlab
scalar variable final_radial_position), the ode45 approximation to the radial position of

the particle at the final time.

The Matlab code ode45 (which you will call from within your function driver_func_Q5 will
require a Matlab function which implements the “dynamics” g(t, w, α, U) of (10). We suggest
that you first create a standard named Matlab function

function [w_dot] = g_particle_in_flow(t,w,alpha,Flowfield)

which implements g(t, w, α,U); then, directly in the input list of your call to ode45, you may
form the dynamics function (of the input-output form required by ode45) as

@(t,w)g_particle_in_flow(t,w,alpha,Flowfield) % note Flowfield, not @Flowfield

for the particular value of alpha and the particular function FlowField of interest. (Note that
you require Flowfield, not @Flowfield, in this anonymous function definition: Flowfield in
driver_func_Q5 is already a function handle.)

9

A template for the script for this question is provided in A4Q5_Template: you should not mod-
ify this template; you must only remove the _Template and upload in your YOUR_ASSIGNMENT_4
folder. We also provide you with function templates in driver_func_Q5_Template and
g_particle_in_flow_Template. Note that for this question you must upload in your folder
YOURNAME_ASSIGNMENT_4 your script A4Q5 as well as your functions driver_func_Q5 and
g_particle_in_flow; grade_o_matic_A4 will not provide either the driver_func_Q5 func-
tion or the g_particle_in_flow function.

In this problem we appreciate that it will be difficult for you to create your own velocity fields
with which to test your code. Thus in this question the grader and student input instances
coincide. The three grade_o_matic input instances correspond to potential flows: flow past
a cylinder, a sink-vortex flow, and a stagnation flow. In all three cases, grade_o_matic

will present you with visualizations of the flow field as streamlines. (Although these flow-
fields are not overly realistic, the particular particle trajectories tested by grade_o_matic

are in fact quite reasonable.) We ask that you retain the Matlab files Cylinder_PF.m

and Cyclone_PF.m in your YOURNAME_ASSIGMENT_4 folder (in order that grade_o_matic can
function properly).

6. (20 points)

2c

2a
2b

e

e

1

e

e

2

e

e

3

I1 =
1
3

a2 + b2 M

I2 =
1
3

a2 + c2 M

I3 =
1
3

b2 + c2 M

Figure 3: Local coordinate frame and moments of inertia for a parallelepiped book.

In this question we shall consider the stability of a spinning parallelepiped (or “book” for
short). We show in Figure 3 our book with semi-axes a, b, and c and principal moments of
inertia I1, I2, and I3 in respectively the e1, e2, and e3 directions. In general, the principal

10

moments of inertia are related to the dimensions of the book by

1
I1 = (a2 + b2)M

3

1
I2 = (a2 + c2)M (14)

3

1
I3 = (b2 + c2)M,

3

where M is the mass of the book. The units for length and mass are cm and g such that the
units for the moment of inertia are g-cm2.

Euler’s equations (in the book frame) for torque-free motion are given by

dω1
= −ω2ω3(I3 − I2)/I1

dt

dω2
= −ω3ω1(I1 − I3)/I2 (15)

dt

dω3
= −ω1ω2(I2 − I1)/I3

dt

where ω = ω1e1 + ω2e2 + ω3e3 is the angular velocity vector in the book frame. (Hence, for
example, ω1 represents the rotation about the e1 axis of our book.)

Assume now that we are given a time-independent, or equilibrium, solution to (15), ω; in fact,
as we describe below, there are three equilibrium solutions to (15). We recall the process (see
the nutshell video Stability) by which we determine the stability of an equilibrium solution ω:
we write ω(t) = ω + ω′(t); we insert this expression for ω(t) into (15); we neglect all products of

 (the assumed small) “prime” terms5 to arrive at the linear(ized) equations

dω′
= Aω′(t) (16)

dt

where ω′ is 3×1 vector and A (which will depend on ω) is a 3×3 matrix; we assume temporal
behavior of the form ω′(t) = veλt to arrive at the eigenvalue problem

Av = λv (17)

for complex eigenvalue λ and (3 × 1) complex eigenvector v (there will be three eigenvalues and
three associated eigenvectors); we solve our eigenproblem (17) with a call to Matlab built-in
function eig; and finally, we interpret λ to assess stability.

As regards the stability interpretation, we recall that if the real part of any of the three eigen-
values λ is positive then the system is unstable — the amplitude of ω′(t) is exponentially
growing in time — and will rapidly depart from the corresonding equilibrium solution ω. On
the other hand, if the real part of all three eigenvalues λ is negative, then the steady solution
is stable and will persist. The neutral or marginal case — in which the real part of the eigen-
value λ with largest real part is zero — would require further attention to better understand

5Note by definition of an equilibrium, the products of two ”bar” terms will also vanish; we consider particular
equilibria below.

11

dissipation and also possibly higher-order (nonlinear) corrections. (For our problem here, the
addition of drag terms to our lossless model (15) would most likely shift eigenvalues to the
left in the complex plane and thus “stabilize” a marginally stable equilibrium. However, we
should not make this presumption without further investigation.) In practice, we might also
be interested in the imaginary part of the eigenvalues, which is related to the frequency of
oscillations about the equilibrium, or “wobble.”

We would like you to write a script which calculates the eigenvalues λ for each of the three
 equilibrium solutions of (15): ω1≡ (1 0 0)T (rotation about the principal direction e1, which has

the smallest moment of inertia); ω2 ≡ (0 1 0)T (rotation about the principal direction e2, which
has the intermediate moment of inertia); and ω3 ≡ (0 0 1)T (rotation about the principal
direction e3, which has the largest moment of inertia). (It is simple to deduce that each of these
equilibria is indeed a time-independent solution of (15).) Hence as a first step you will need to
perform the requisite linearizations of (15) to deduce the matrix A of (16) and hence the
eigenproblem (17) — note that A will be different for each of the three equilibrium solutions.

The script will take four script inputs: real positive numbers a, b, c, and M , which must
correspond to Matlab (scalar) variables a, b, c, and M, respectively; allowable instances
must satisfy 0 < a ≤ b ≤ c and 0 < M .

The script will yield three script outputs. For each equilibrium, ωi, i = 1, 2, 3, we will obtain
three eigenvalues, λij , j = 1, 2, 3. We may then define

Gi = max <(λij), i = 1, 2, 3 , (18)
j∈{1,2,3}

where <(z) refers to the real part of a complex number z. (In words, Gi is the maximum
real part — which governs stability — over all three eigenvalues associated with the ith

equilibrium.) Our three outputs are then the three real numbers G1, G2, and G3, which must
correspond to Matlab (scalar, real) variables G_1, G_2, and G_3, respectively.

A template for the script for this question is provided in A4Q6_Template.

Elective Exercise. (0 points) We would also invite you as an elective final step to confirm
your stability conclusions — as to which equilibria will spin stably and which will rapidly
deviate into apparently “random” motion— by experiments with a physical parallelepiped.
You might also attempt to confirm your predictions for the frequency of stable wobble. To
avoid damage to a book or injury to your person we provide in Rm 3-264 an official soft-matter
2.086 pseudo-book with dimensions a = 1 cm, b = 10 cm, c = 15 cm, and mass M = 55 g.

Appendix to Question 1: Function Handles

We suggest you test rect_right_rule — and your understanding of function handles — in
several ways. We consider below the case in which the function we wish to integrate, f(x), is
given by f(x) = x2. The input integrand_func to rect_right_rule (which of course need not
be named integrand_func) can be created in several ways.

First, you can create a “named” function myfunc_1 defined in a file myfunc_1.m given by (say)

12

function [integrand_values] = myfunc_1(x_vec)

integrand_values = x_vec.^2;

end

and then call rect_right_rule(@myfunc_1,0,pi,200). Here @myfunc_1 is the handle (a specific
instance of integrand_func) of the function myfunc_1; in essence, the function handle @myfunc_1

tells Matlab where to find the code which implements the function myfunc_1.

As an alternative to a named function, we may also create an anonymous function

myfunc_2 = @(x) x.^2

and then call rect_right_rule(myfunc_2,0, pi,200) — note the absence of “@” since for an
anonymous function the “name” is directly the handle.

Finally, we may create an anonymous (or named) function with “additional” parameters,

myfunc_3 = @(x,p) x.^p

and then call rect_right_rule(@(x)myfunc_3(x,2),0,pi,N) — we create the specific anonymous
function, with inputs expected by rect_right_rule, directly in the call to rect_right_rule. Note
the latter is a convenient way to effectively pass parameter values to functions within functions.

13

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

